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Abstract—Deep learning has enabled personal and IoT devices
to rethink microphones as a multi-purpose sensor for understand-
ing conversation and the surrounding environment. This resulted
in a proliferation of Voice Controllable Systems (VCS) around
us. The increasing popularity of such systems is also prone to at-
tracting miscreants, who often want to take advantage of the VCS
without the knowledge of the user. Consequently, understanding
the robustness of VCS, especially under adversarial attacks, has
become an important research topic. Although there exists some
previous work on audio adversarial attacks, their scopes are
limited to embedding the attacks onto pre-recorded music clips,
which when played through speakers cause VCS to misbehave.
As an attack-audio needs to be played, the occurrence of this
type of attacks can be suspected by a human listener. In this
paper, we focus on audio-based Denial-of-Service (DoS) attack,
which is unexplored in the literature. Contrary to previous work,
we show that adversarial audio attacks in real-time and over-
the-air are possible, while a user interacts with VCS. We show
that the attacks are effective regardless of the user’s command
and interaction timings. In this paper, we present a first-of-its-
kind imperceptible and always-on universal audio perturbation
technique that enables such DoS attack to be successful. We
thoroughly evaluate the performance of the attacking scheme
across (i) two learning tasks, (ii) two model architectures and (iii)
three datasets. We demonstrate that the attack can introduce as
high as 78% error rate in audio recognition tasks.

Index Terms—Speech recognition, Voice controllable system,
Adversarial attack, Universal adversarial perturbation

I. INTRODUCTION

Deep learning-based classifiers are becoming ubiquitous

around us and an increasing number of applications are using

some form of deep learning for accurate context inference,

e.g., recognizing speech and understanding images. Based on

their success, more and more smart devices are becoming

equipped with microphones and voice controllable systems

(VCS), such as Siri, Alexa, and Google Home, which allow

users to control appliances solely using their voice. These

audio input based intelligent systems can in principle leverage

not only the users’ voices but also their surrounding audio

context such as ambient scene detection to provide informed

contextual services. It is expected that these systems powered

by the conjunction of audio input and deep learning technolo-

gies will continue to proliferate and augment our daily lives.

* The work was conducted when this author was in Nokia Bell Labs.

Since these systems are triggered by audio inputs, one major

concern is that they may be especially vulnerable to unwanted

sound inputs generated nearby the system microphone, which

could be intended to force the system to activate and trigger an

unwanted action. Examples of such unwanted actions include

purchase an item online without user’s consent, or command a

vehicle to accelerate or decelerate unexpectedly with potential

life-threatening consequences.

Adversarial attacks in the audio domain focus on the worst

form of such vulnerabilities, namely on audio attacks which

are almost imperceptible, and therefore may successfully

compromise VCS without its user realizing it until it is too

late. The principle of adversarial attacks is to fool the model

by finding and injecting a small, imperceptible perturbation

onto a correctly classified normal input so that the model

incorrectly classifies the perturbed input even though humans

cannot perceive any significant difference between the original

and the corrupted input.

Although impressive, state-of-the-art adversarial attacks on

deep audio models [1], [2], [6]–[9], [12], [23] have a restrictive

form that first (i) selects a pre-recorded benign audio clip

that will be used as an attack carrier in a future attack, and

then (ii) computes and injects an adversarial perturbation to

the original clip prior to the attack to create another audio

file which sounds similar to the average human but which

is designed to fool a VCS into activating and producing an

unwanted action. Once this is done, an attack can then be

carried out by downloading and playing the pre-computed

attack near a VCS. Within this setting however, previous

work is mostly limited to creating and studying such attacks

without actually playing them over-the-air in so called offline

analysis [2], [7]–[9], [12], [23]. Recent studies have shown that

those attacks could be realized via uninterpretable audio [1],

[6] or a song [26]. However, such attacks are limited in that

they produce audible sounds (with only the attack components

being almost imperceptible), namely unintelligible audio or a

song, and can therefore be noticed by the user and guarded

against by having the user turn off every audible sound source

in the vicinity of the VCS.

In this paper we open a new audio adversarial attack

scenario space, namely Denial-of-Service (DoS) attacks on
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VCS, which complements the aforementioned work. Unlike

existing attacks, our attack is aimed to instead compromise

the users’ voice directly without needing any additional no-

ticeable audio having to be played in order to carry out the

attack, where imperceptible audio adversarial perturbations get

superimposed in real-time and over-the-air with the user’s

unconstrained interaction with the VCS. Furthermore, our

attack method is aimed at working regardless of the user’s

voice content and the specific time the user decides to interact

with the VCS.
To build such DoS attacks, there are two important chal-

lenges to resolve, which were not considered in previous work:

(i) An attacker has no knowledge about what will be spoken

from the target user (i.e., the victim). Given this, to be useful

in practice, an attack should be applicable to most inputs

from the user. (ii) An attacker has no knowledge about when
the voice will be spoken by the user. Unlike previous work

which embeds adversarial attacks onto pre-recorded audio

clips, given that in this paper the adversarial perturbation and

the legitimate audio are emitted by two separate entities, there

is no guarantee that the adversarial perturbation played by

an attacker’s device and the victim’s voice will arrive in a

synchronized fashion at the victim’s device (i.e., a VCS). We

therefore study the timing and lack of synchronization of these

two signals in real-time over-the-air and find that it directly

affects the performance of the audio task. With these two

challenges in mind our goal is to design an audio adversarial

attack that is applicable to any input from the user, at any
time.

We propose AudiDoS, a DoS attack for audio deep models

that meets the aforementioned objectives. Our key insight is

that there exist such a “universal” adversarial perturbation for

audio inputs that compromises most of users’ speech, so that

it would make a deep audio model misclassify most of the

users’ input. More specifically, AudiDoS trains a universal

adversarial perturbation in a way that it maximizes the mis-

classification rate when combined with the possible inputs,

while limiting the magnitude of the perturbation to minimize

the perceptibility of the attack. The attacker plays this small

perturbation continuously near the target deep audio model,

which causes the model to incorrectly classify inputs which

it would normally classify correctly. In essence, AudiDoS

is applicable to any deep audio model without knowing the

content (what will be spoken) and the time (when it will be

spoken) ahead of the time.
We summarize our main contributions as follows:

• This is the first study that identifies the content and

delivery time independence problems that need to be

overcome to achieve an effective DoS attack in the

audio domain, and that designs a realistic DoS attack for

audio models through universal perturbations that work

irrespective of what is spoken or when it is spoken.

• Our evaluation across two learning tasks (keyword spot-

ting and speech-to-text problems), two different models

(e.g., SoundNet [5] and DeepSpeech2 [3]) and three

different datasets (e.g., Speech Commands [24], Lib-

riSpeech [16] and TED-LIUM [19]) in both offline anal-

ysis and in-the-wild experiment shows AudiDoS is more

effective than the random noise baseline with the same

magnitude of the attack.

• Our results indicate that it is possible to create intelligent

attacks which greatly outperform baseline attacks based

on random perturbations with the same magnitude, i.e.,

perceptibility level. For instance, when we target Sound-

Net trained with Speech Commands dataset, the error rate

of the model with our attack is 78% error rate in the real-

world experiment (the baseline is 48%).

We believe this work opens avenues for the development of

more sophisticated audio adversarial attacks and this, in turn,

furthers the development of more robust deep audio models

to such threats.

II. BACKGROUND

To describe the main challenges when developing audio

adversarial attacks that are effective in real-world settings, in

this section we explain adversarial examples and the increas-

ing levels of complexity that arise in developing adversarial

attacks: first for software audio adversarial attacks, and then

for the setting of this paper namely real-world audio attacks.

We also formalize the concepts of: white-box versus black-box

attacks and input dependent versus input independent attacks.

A. Adversarial Examples

Consider a multi-class classification problem, where the

goal is to learn a mapping between an input x ∈ R
p (e.g.,

an audio clip) and a label y ∈ {0, . . . ,m − 1} (e.g., whether

an audio contains the word ‘cat’). For the modeling purpose

we use a neural network f(x;θ) ∈ R
m where θ ∈ R

n denotes

a vector of parameters and

0 < [f(x;θ)]i < 1,

m−1∑
i=0

[f(x;θ)]i = 1,

with the interpretation that the neural network will correctly

capture the probability of the various labels matching the given

input, i.e., [f(x;θ)]i ≈ P(y = i|x,θ), and one takes as a

neural network label the one corresponding to the maximum

probability, i.e., ŷ(x;θ) := argmaxi{[f(x;θ)]i}. Having

trained the neural network, i.e., settled into a particular choice

for the parameters θ∗, given an input/label example (x, y)
which is correctly classified by the trained neural network, i.e.,

ŷ(x;θ∗) = y. One calls an adversarial perturbation [22] any

ε ∈ R
p, dependent or independent of the particular input/label

pair, for which:

• most humans cannot perceive any significant difference

between the original input x and the corrupted input x+ε,

but

• the neural network changes its output so that it incorrectly

classifies the perceptually indistinguishable input, i.e.,

ŷ(x+ ε;θ∗) �= y.

In this setting, x + ε is referred to as an adversarial
example. When we adopt adversarial examples to attack a
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Fig. 1. An illustration of audio adversarial attack.

system based on neural networks, we call them adversarial
attacks. An illustrative example of an adversarial attack for

audio is depicted in Fig. 1, where an adversarial example is

fed into the trained neural network to fool it. We magnify

the adversarial perturbation for illustration purposes, but note

that it would otherwise be imperceptible to humans, i.e., they

would not ‘hear’ any dissimilarity between the original and

corrupted audio.

Adversarial perturbations are desired to be as small as

possible in some norm as a means to minimize perceptibility

of the adversarial examples. In order to create an adversarial

example, one may solve for the minimization problem

ε(x) := argmin
ε

‖ε‖ s.t. ŷ(x+ ε;θ∗) �= ŷ(x;θ∗). (1)

As for the norm ‖ · ‖ in (1), one can choose any sub-

differentiable norm, but most works use the ‖ · ‖∞ norm (�-
infinity norm) for constraining adversarial perturbations [7],

[13], [14]. Approximate solutions to the aforementioned and

other minimization problems for adversarial perturbations can

be obtained in various ways. A well-known approach is via

the fast gradient sign method [10] and more generally via

projected gradient descent [4].

B. White-Box vs. Black-Box Attacks
& Input Dependent vs. Input Independent Attacks

In the aforementioned attack and in similar minimization

problems, if the attacker has the complete knowledge about the

model architecture and parameters, i.e., knows f(x;θ∗) when

performing the minimization, then it is a white-box attack.

Otherwise, it is a black-box attack [1], [17], [23].

As an important observation for the remainder of this paper,

it is crucial to note that in (1) each attack is tailored to one

specific input, so that different inputs would lead to different

attacks, i.e., these attacks are input dependent. However, this is

not necessary and input-independent attacks can be generated

in a way that they are applicable to most possible inputs.

We will mainly discuss attacks which are input independent
throughout the remainder of the paper.

C. Limitations of Existing Audio Adversarial Attacks

Recent studies have began to show the possibilities of

applying adversarial attacks to audio inputs [7], [8], [12],

[23]. While these studies have revealed some of the threats

that adversarial attacks pose to VCS, most of such work has

conducted only offline evaluation, i.e., it simulated adversarial

attacks in a single machine without playing the adversar-

ial examples over-the-air. In real-world environments where

many distorting factors exist, such as reflection, attenuation,

absorption of audio signal, analog-to-digital and digital-to-

analog conversions, and noise sources, the performance of the

proposed attacks remains broadly untested.

Fig. 2. Illustration of the threat model.

Several studies have realized those attacks by compromising

a pre-downloaded benign audio and generating uninterpretable

audio [1], [6] or a song [26]. However, when those attacks

are played and successfully carried out over-the-air, they are

limited in the sense that they produce audible sounds (with

only the attack components being almost imperceptible), and

can therefore be noticed by the user and guarded against by

having the user turning off every audible sound source in the

vicinity of the VCS.

III. THREAT MODEL

We propose a new audio adversarial attack scenario, namely

real-world audio DoS attack. Unlike the aforementioned ex-

isting audio adversarial attacks, we aim to compromise the

users’ voice directly without needing any additional noticeable

audio having to be played in order to carry out the attack.

Furthermore, given the small magnitude of the proposed at-

tacks, the DoS audio adversarial attacks are almost completely

inaudible which therefore makes it difficult to identify their

source, compared to the previous work that generates audible

sounds.

We propose white-box DoS attacks for VCS in practical

settings aimed at unconstrained audio from users. We focus

and overcome the following two important challenges that are

crucial to realize the DoS attack on audio.

Input independence: An attacker has no knowledge in ad-

vance about what sound will be uttered by the legitimate user.

Previous work generates an adversarial perturbation based on

a specific input from a static dataset to generate an adversarial

example [1], [2], [6]–[9], [12], [23], which is not possible in a

practical DoS attack scenario. For an effective DoS to fool the

classifier in a VCS, the attacker should generate an adversarial

perturbation that is applicable to any possible inputs from the

user.

Time independence: An attacker has no a priori knowledge

about when the audio command will be spoken by the user.

As hinted in the previous section, synchronization between

the adversarial perturbation and the user input directly affects

the fooling rate of the attack. Since most existing work trains

adversarial examples for a specific input, they assume that

the adversarial perturbation is perfectly synchronized with the

particular input. For a reliable DoS, adversarial perturbations

should work without needing to be perfectly synchronized with

the specific input.

Fig. 2 demonstrates our threat model. There is a user

(victim) who speaks with her voice, illustrated as “house”,

“seven”, and “right”. There is a device (classifier) which

recognizes user’s spoken language. The attacker, a device with
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Fig. 3. Illustration of the fooling algorithm, where perturbation is crafted to
alter the response of each layer from informative features to uninformative
similarly activated features.

a speaker (e.g., smartphone), continuously generates input- and

time-independent adversarial perturbations, which are detailed

in the next section. The played adversarial perturbations from

the attacker are then combined with the user’s spoken words

naturally over-the-air. Note that the attacker has no prior

knowledge about what and when the user speaks and there is

no guarantee that the adversarial perturbations and the user’s

spoken audio will arrive ideally synchronized at the device.

The combined audio signals nevertheless become adversarial

examples, which fool the device and incorrectly classify the

inputs as “visual”, “one”, and “left”.

IV. METHODOLOGY

In this section we describe methods for generating input-

and time-independent perturbations for effective audio DoS

attacks. Our key starting point is that there might exist

a universal adversarial perturbation for audio inputs that

compromises most of users’ speech commands. We build

on the concept of universal adversarial attacks designed for

images [15]. However, unlike images, audios are sensitive to

the signal propagation distortion and synchronization between

the benign audio and the adversarial perturbation. We present

training algorithms for adversarial perturbations to be tolerant

to interaction timing. Our proposed solution overcomes the

input- and time-independence challenges that are unique for

practical audio DoS adversarial attacks. Together with the

development of DoS attack, we also present how we can define

and measure the imperceptibility of the attacks.

A. Attack Algorithms

Two main requirements of AudiDoS are: (i) universal audio

adversarial perturbation generation, and (ii) overcoming time-

synchronization. Our main objective is to find a perturbation

that works for most inputs and their possible shifts, i.e.,

there exists an input independent perturbation ε such that

ŷ(x + ε;θ∗) �= ŷ(x;θ∗) for most inputs x. To create such a

universal perturbation, we leverage the Fast Feature Fool (FFF)

algorithm [15] from the vision domain, which we modify and

augment to solve the aforementioned problems unique to the

audio domain via the proposed AudiDoS system. The FFF

algorithm generates a universal adversarial perturbation by

falsely firing activations in the neural network. The intuition of

the algorithm lies in compromising one of the basic principles

of neural networks namely that the activations of each neuron

act as informative features for next layer. For example, Fig. 3

illustrates that when a benign audio input “right” is presented,

a specific subset of neurons are activated, which provides

useful information for the decision of the classifier. However, if

we artificially activate all the other neurons, then the classifier

performs poorly as it looses important feature extraction prop-

erty. The FFF algorithm generates an adversarial perturbation

ε that is designed for this purpose in the vision domain; A

universal adversarial perturbation ε is obtained by minimizing

the following loss function given x as a normal input:

L(ε) = − log

⎛
⎝

K∏
k=1

lk(x+ ε)

⎞
⎠ s.t. ‖ε‖∞ ≤ E , (2)

where K is the number of layers to be falsely activated, and

l k(x+ ε) is the mean absolute value of the k-th layer output.

However, the original FFF-algorithm produces perturbations

that requires perfect synchronization with the benign audio,

which limits its practicality in real-world situations. To over-

come this problem, we propose two novel training method-

ological extensions for the audio domain. First, we randomly

rotate the perturbation while training, which is a modification

aimed at preventing the learned perturbation from being overly

synced with the training audio inputs. Second, we halve the

amplitude of the perturbation periodically throughout training,

which is an enhancement aimed to promote a thorough search

of the best perturbation in the neighbourhood defined by

‖ ε‖∞ ≤ E , rather than allowing the algorithm to quickly

navigate the shortest path from the center to the boundary

of the ‖ε‖∞-ball without sufficient exploration.

B. Perceptibility Measure

As adversarial attacks are based on the premise that they

should be imperceptible to human ears, it is important to

select an appropriate value of the perturbation constraint E .

For example, a higher value of E would be effective to fool

the classifier with a noticeability of the attack, while a lower

value would end up being a useless attack. In order to quantify

the trade-off between the effectiveness and the perceptibility,

we use the decibel (dB) to quantify the relative loudness

of adversarial perturbations to normal audio inputs [7]. The

decibel of an audio sample a is represented as:

dB(a) = max
i

20 · log10(ai). (3)

To measure the relative loudness of the perturbation ε to the

normal x, we subtract the dB of x from the dB of ε, i.e.,

dBx(ε) = dB(ε)− dB(x). (4)

Since human ears interpret sound in dB scale, a low dBx(ε)
can be interpreted as a low perceptibility audio perturbation.
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TABLE I
SYNCED ERROR RATES (ER) AND PERCEPTIBILITY (DB) OF AUDIDOS

ACCORDING TO DIFFERENT CONSTRAINTS E IN THE SPEECH COMMANDS

DATASET.

E Synced ER dB
0.5 0.968 1.02
0.2 0.970 -6.94
0.1 0.968 -12.96
0.05 0.951 -18.98
0.02 0.893 -26.94
0.01 0.777 -32.96
0.005 0.514 -38.98
0.001 0.182 -52.96
Benign 0.034 —

V. EVALUATION PART I: OFFLINE ANALYSIS

We begin by an offline analysis, where we measure the

effectiveness of AudiDoS when performing attacks on neural

networks that are trained for the audio keyword detection

task. Next, we also present performance result of AudiDoS

on Automatic Speech Recognition (ASR) tasks.

A. Keyword Spotting Experiment

In the following we describe the details of our offline

experiments. For training the neural networks and computing

the perturbations, we used the PyTorch [18] framework.

1) Dataset: We use Speech Commands [24] dataset as

the default dataset unless otherwise mentioned. The dataset

contains 105,829 1-second long utterance of 35 common

English words from a large number of users, recorded with

16 KHz sampling rate. The vocabulary in this dataset spans

digits, and words useful in IoT applications, e.g., on, off, start,
stop. The dataset is balanced in terms of the number of samples

for each class and includes example of natural background

noise.

2) Model: We adopted 5-layered convolutional neural net-

works (CNN) used in SoundNet [5] and modified for our task.

The model is composed of five convolutional layers with three

max-pooling layers. Each convolutional layer is followed by

a batch normalization and a ReLU activation layers. After

five convolutions layers, it has two fully-connected layers for

classification. We trained this model with the aforementioned

Speech Commands dataset. This model gets 1-second of

audio input and outputs the classified word among 35 words

described above. The trained model shows 0.034 ER on the

test set, i.e., the percentage of incorrect prediction, without

any attacks.

3) Perturbation: The adversarial perturbation generated by

AudiDoS is a vector with 16K samples, i.e., the same size

as the input for the neural networks. We used 10K randomly

selected training examples from the Speech Commands dataset

for generating the perturbation. While training, we falsely

activated each activation and max pooling layer of the model.

B. Keyword Spotting Results

In this subsection we report the error rate (ER) of the model,

when inputs are combined with the adversarial perturbations

TABLE II
SYNCED AND UNSYNCED ERROR RATES (ER) OF RANDOM AND AUDIDOS

IN THE SPEECH COMMANDS DATASET.

Method E Synced ER Unsynced ER dB
Random 0.02 0.307 — -26.94
Random 0.01 0.242 — -32.96
AudiDoS 0.02 0.873 0.780 -26.94
AudiDoS 0.01 0.753 0.632 -32.96
Benign — 0.034 — —

generated with varying E . To quantify the effect of synchro-

nization and lack of synchronization between the attacker’s

sound and the victim’s utterance, we report both synced

and unsynced ERs. Synced ER refers to the setting when

the perturbations are (respectively, are not for unsynched) in

perfect synchronization with victim’s utterance.

1) Impact of Constraint E: When training an adversarial

perturbation, the limit of the magnitude of the perturbation

(i.e., the constraint E) directly affects both the success and

the perceptibility of the attack. To investigate the precise

impact of E in the audio domain, we evaluate the ER of

AudiDoS with different values of E . Table I summarizes the

ER for different constraints E , as well as the reference benign

case corresponding to the original performance of the model

without any attack. We calculated the ERs with 12k test

examples from the Speech Commands dataset. As shown in

Table I, the ERs drop gradually as the constraint E decreases

from 0.5 to 0.001. In particular, constraints higher or equal to

0.05 achieve more than 0.95 ERs, while the lowest constraint

0.001 yields lower than 0.2 ER. In addition, Table I also

reports on the perceptibility of the attacks using Equation 4,

with which we calculated the dB levels of the attacks relative

to the entire training dataset from Speech Commands and

reported the averaged dB. In this regard, except for E = 0.5,

all measured dBs are negative, which means the attacks are

smaller than the normal unperturbed audio keywords. As a

point of reference, -30 dB is similar to the dB difference

between normal speech and ambient noise in a quite room [7].

Thus Table I informs us that to achieve a practical attack in

terms of ER and perceptibility, we should focus on values of

E of 0.01 or 0.02.

2) Unsynced Attack: Although the previous results yield

important insights into the performance of AudiDoS, in a real-

world scenario an attacker continuously plays an adversarial

perturbation through the air and has no control as to when

the user will interact with his/her device, which means that

synchronization between the target input and the adversarial

perturbation cannot be guaranteed. To quantify the effect of

this phenomenon on the effectiveness of real-world attacks,

Table II compares the ER of attacks with random (baseline)

and AudiDoS, not only for synced but also for unsynced

attacks. We tested each method with 12K test examples from

the Speech Command dataset. To simulate the effect of an

unsynced perturbation on an audio input, we right-rotated the

perturbations to generate ten different perturbation versions.

For example, ε0 is generated by right-rotating ε by 100 ms

(i.e., one tenth of the input duration). Next, ε1 is generated

by rotating ε0 by 100 ms and so on. Finally, we evaluated the
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TABLE III
THE CER AND WER OF RANDOM AND AUDIDOS USING LIBRISPEECH

DATASET AND DEEPSPEECH2 MODEL.

Method Norm CER CER* WER WER* dB
Random 0.02 0.583 — 0.932 — -28.00
Random 0.01 0.490 — 0.859 — -34.02
AudiDoS 0.02 0.805 0.756 0.999 0.991 -28.00
AudiDoS 0.01 0.762 0.703 0.994 0.978 -34.00
Benign — 0.079 — 0.236 — —

*unsynced result.

ER of ε0, ε1, . . . , ε9 and averaged the results into the unsynced

ER column in Table II.

From Table II we observe that the results of AudiDoS vary

between synced and unsynced attacks (random has no impact).

In particular, the fact that unsynced ERs for AudiDoS are

lower than synced ERs shows that the synchronization or lack

thereof should be considered when designing attacks for audio

applications. Although there is some degradation from synced

to unsynced results, AudiDoS shows higher ERs than random

ones. Furthermore, it can be observed from Table II that as

the norm of the perturbation E increases, the ER increases in

all the cases; in particular, while random gives the lowest ER

of 0.2-0.3, AudiDoS show ERs as high as 0.8.

C. Automatic Speech Recognition (ASR) Experiment

Moving away from the keyword spotting task, in this section

we consider a more general task of ASR to further validating

effectiveness of AudiDoS. ASR is more challenging task and

contrary to prevision scenario, inputs to the neural networks

can be of variable length and the output can potentially be any

arbitrary text supporting an open vocabulary.

1) Datasets: For ASR experiments, we consider Lib-

riSpeech [16] and the TED-LIUM [19] datasets. We use these

datasets containing unconstrained speech to understand the

effectiveness of our attacks in more general settings. In detail,

LibriSpeech is a public automatic speech recognition corpus,

which contains 1,000 hours of speech data derived from 14,500

English audio books sampled at 16 KHz. TED-LIUM is an

English-language TED talks corpus with transcriptions, which

is extracted from 1,495 TED talks which are 207 hours in total

under 16 KHz sampling rate. The corpus contains over 2.6 M

words.

2) Models: The model we used in this experiment is

the state-of-the-art speech-to-text model DeepSpeech2 [3].

DeepSpeech2 uses connectionist temporal classification (CTC)

loss, which enables to process unsegmented sequence data

directly [11]. We trained two DeepSpeech2 models with Lib-

riSpeech and TED-LIUM dataset respectively. The structure

of the models are the same. Specifically, the models start with

two convolutional layers, followed by five gated recurrent unit

(GRU) layers and ends up with one fully-connected layer. The

model uses batch normalization for each layer.

3) Perturbations: DeepSpeech2 model gets variable length

of audio and breaks it down into 20 ms-sized chunks. Ac-

cordingly, the trained adversarial perturbation for this model

is 320 dimensional vector. While training, we falsely activated

TABLE IV
THE CER AND WER OF RANDOM AND AUDIDOS USING TED-LIUM

DATASET AND DEEPSPEECH2 MODEL.

Method Norm CER CER* WER WER* dB
Random 0.02 0.577 — 0.929 — -30.61
Random 0.01 0.607 — 0.931 — -36.64
AudiDoS 0.02 0.701 0.717 0.985 0.983 -30.61
AudiDoS 0.01 0.752 0.662 0.992 0.971 -36.64
Benign — 0.115 — 0.378 — —

*unsynced result.

Fig. 4. Real-world experiment setup.

the two activation layers after the first two convolutional layers

of the model.

4) Results: Table III shows the results for the DeepSpeech2

model trained with the LibriSpeech dataset and Table IV shows

the results for the DeepSpeech2 model trained with the TED-

LIUM dataset. The tables show that AudiDoS is generally

better than random perturbations for both datasets. Specifically

in Table III, AudiDoS achieves more than 0.2 CER degradation

compared to random. We found that if the benign performance

of model is not good (e.g., benign WER is 0.378 in Table IV),

we can achieve high error rate with small perturbation or

even with random noise. The performance gain using other

methods becomes noticeable when the benign performance is

good (e.g., benign CER is 0.079 in Table III). We conjecture

that if the audio model performance itself is not enough, then

it would be more susceptible to adversarial attack or even

random noise, and we believe this is something to consider

when building a speech-to-text model that works in the wild.

VI. EVALUATION PART II: REAL-WORLD EXPERIMENT

In this section we complement our study by evaluating our

attacks in a real-world environment. In particular, we investi-

gate the performance of AudiDoS in the wild and uncover

the challenges associated with real-world audio adversarial

attacks.

A. Experimental Setting

Fig. 4 shows the setup for the real-world experiment.

For this experiment, we used SoundNet model and Speech

Commands dataset. To account for different speech utterances

and noise levels, we automated the user’s interaction with

the device running the classifier by playing speech commands

through i) a Nexus 5X smartphone and ii) an Anker Sound-

Core2 portable speaker. The sound emitted by these devices

thus represents the user’s speech which is being broadcasted

over the air to be picked up by the microphone of the device

running the classifier. These two devices, i.e., the users are

about 30 cm away from the device running the classifier. The

classifier is running on a LG Gram laptop, connected to an

external microphone. Finally, we placed a Samsung Galaxy

A8 next to the classifier as the attack device. Throughout the
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Fig. 5. Error rate of the classifier with attacks (E = 0.01).
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Fig. 6. Error rate of the classifier with attacks (E = 0.02).

experiment, the devices were placed on top of a desk in an

office room. We played 100 audios from Speech Command test

set at the speakers representing the user’s speech. Meanwhile,

we played 1 second of the attack sound repeatedly through the

attacker’s device. Accordingly the test audios and the attack

sound were not synchronized when arriving at the classifier

device. We measured ERs of the classifier by comparing

classified outputs and ground-truth labels of each sample

across various attack methods.

B. Results

Fig. 5 shows the ERs when the constraint (E) is equal to

0.01. On the x-axis benign refers to a non-attack scenario,

random refers to using random noise as perturbations and

AudiDoS refers to the attacks generated by our proposed

method. We use offline as a baseline, where the evaluation

is done on a single machine without playing the user’s speech

and the attack sound over the air and thus the audio inputs

that ‘reach’ the classifier are artificially synchronized. We first

observe that even without any attack, the ER of the classifier

in-the-wild increases from 0.03 to 0.37 (Nexus 5X) and from

0.03 to 0.2 (SoundCore2), which is mainly caused by the

poor speaker and microphone quality, distortion, multi-path

and noise. With a higher constraint of 0.02, the ERs drop

consistently as shown in Fig. 6. It is worthwhile to observe

that the ERs with attacks (Random and AudiDoS) in Fig. 5–6

are in line with the result in Table II.

In all cases, AudiDoS is consistently shown to be a more

effective attack compared to Random noise. However, Au-

diDoS underperforms compared to the Offline evaluation.

We believe this is caused by distortions in the audio in-

the-wild, the same reason which caused the classifier error

to increase between Offline and in-the-wild settings in the

Benign scenario. A recent study [26] overcomes this problem

by injecting random noise while training the perturbation; a

technique that is orthogonal to AudiDoS, and can therefore

be incorporated alongside AudiDoS. In summary, AudiDoS’s

performance remains valid in the wild and is more effective

than random attacks, with ERs as high as 78%.

VII. RELATED WORK

In this section, we review prior work on attacking voice-

controllable systems (VCS) from the domain of audio adver-

sarial attacks, and universal adversarial perturbation.

A. Audio Adversarial Attacks

Recent studies show the existence of adversarial attack on

audio models such as speech recognition [8], [9] and speaker

verification model [12]. Carlini et al. [7] applied adversarial

perturbation for targeted attack on speech-to-text model to

trigger commands of attacker’s interest. Other studies [2], [23]

demonstrate the possibility of adversarial examples for black-

box audio systems. However, their evaluation is limited to

offline analysis where the adversarial examples did not play

through the air and thus had no issues such as distortion, noise,

and synchronization between the adversarial perturbations and

the target audio.

Several studies demonstrate the possibility of the attacks

in the wild. The hidden voice commands [1], [6] work gen-

erates obfuscated voice commands (i.e., noises that humans

cannot interpret but VCS do) for launching commands of the

attacker’s interest. However, the obfuscated commands used

in this work are directly played over the air and thus makes it

noticeable to users. CommanderSong [26] embeds adversarial

perturbations on common songs to trigger attacker-intended

commands. Yakura et al. [25] design malicious voice com-

mands generated by adversarial examples and evaluated them

over the air. While these studies play malicious commands

directly over the air, AudiDoS aims to compromise benign

inputs from users (DoS attack), thus making it more stealthy

in nature. That said, the fundamental techniques proposed in

the previous works to account for audio distortion when the

adversarial samples are played over the air could be combined

with AudiDoS to make a more robust attacking system.

B. Inaudible Voice Commands

A series of works have shown that it is possible to give

almost inaudible malicious commands to these systems by

generating nefarious ultra sounds embedded with legitimate

voice commands that humans cannot very easily recognize

but microphones can [20], [21], [27]. These works leverage

the non-linearity of microphones so that the generated high-

frequency (over around 30kHz) ultra sounds could be captured

as lower frequency (below around 18kHz) sounds at the

microphone. The limitation of these works is that they require

specialized speakers that are able to generate ultra sound. Mod-

ern devices such as iPhone 6 Plus [26] have already patched

the non-linearity problem with their microphones, making the

aforementioned attacks invalid. Our work is independent of

the hardware peculiarities and instead focuses on generating

adversarial perturbations in the software to target the inherent

vulnerabilities of deep audio models, and is thus applicable

to recent smartphones even if they mitigate the non-linearity

effect such as iPhone 6S [26].
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VIII. DISCUSSION

In this section we discuss future directions for this line of

research and limitations of this work.

A. Defense

Our paper is limited to designing attacks on audio deep

models albeit in a universal way. Defending against these

attacks remains an open problem that we leave this task

for future work. However, we now discuss a few potential

attack-prevention techniques that can be employed. Firstly, the

classifier model can monitor the prediction probabilities for

the current input and if there is a spurious high probability

despite the small decibel of the input, then it could be flagged

as a potential attack. Another approach could be to detect the

presence of a continuous signal with a small amplitude, since

the current version of out attack system plays an adversarial

perturbation continuously.

B. Perceptibility

An attack is meaningful when it is stealthy enough to be

imperceptible to users. Although we quantify the loudness of

the perturbations on the dB scale, we acknowledge that it is

not sufficient to measure the true perceptibility by humans.

During our attack experiments, we observed that the adversar-

ial perturbations result in an audible noise, which albeit very

low in amplitude and completely unintelligible, could still be

sensed by humans if they are very close to the attack device

and are trained to know what to hear for. However, as the

distance between a human and the attack device increases, the

ability to sense the attack goes down. As a future research,

we plan to study whether the adversarial perturbations could

be generated in the inaudible frequency range, i.e., over 20

KHz.

IX. CONCLUSION

In this paper, we propose AudiDoS, a system for denial

of service attack targeted to VCS employing deep neural

networks. The proposed system works at real-time and while

humans are interacting with VCS. To the best of our knowl-

edge, this is the first study to adopt the universal adversarial

perturbation concept for the DoS attack on audio deep models.

Our evaluation shows that with a small distortion it is possible

to increase the error rate of a classifier significantly high.

Our real-world experiments demonstrate that such an attack

is indeed feasible in the wild with error rates as high as 78%.

That said, there remain a number of open challenges pertaining

to real-world adversarial attacks as well as for designing

defense mechanisms against them. Apart from widening the

space on real-time DoS attacks on deep audio models over

the air, we believe our findings further illustrate the possible

threats of adversarial attacks on audio deep models and call

for future research to thwart such attacks.
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