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We present MIRROR, an on-device video virtual try-on (VTO) system that provides realistic, private, and rapid experiences
in mobile clothes shopping. Despite recent advancements in generative adversarial networks (GANs) for VTO, designing
MIRROR involves two challenges: (1) data discrepancy due to restricted training data that miss various poses, body sizes,
and backgrounds and (2) local computation overhead that uses up 24% of battery for converting only a single video. To
alleviate the problems, we propose a generalizable VTO GAN that not only discerns intricate human body semantics but
also captures domain-invariant features without requiring additional training data. In addition, we craft lightweight, reliable
clothes/pose-tracking that generates refined pixel-wise warping flow without neural-net computation. As a holistic system,
MIRROR integrates the new VTO GAN and tracking method with meticulous pre/post-processing, operating in two distinct
phases (on/offline). Our results on Android smartphones and real-world user videos show that compared to a cutting-edge
VTO GAN, MIRROR achieves 6.5× better accuracy with 20.1× faster video conversion and 16.9× less energy consumption.

1 INTRODUCTION
With booming e-commerce, clothing purchases are increasingly shifting online. Notably, mobile phones facilitate
76% of these transactions [11, 12]. However, online clothes shopping does not allow customers to evaluate if
a piece of clothing suits them, which causes dissatisfaction and heightened returns. To step forward, there is
a strong demand to recreate the offline clothing selection process virtually – enabling users to employ their
smartphones to emulate trying on different outfits and poses before mirrors.

Multiple mobile services have offered a range of virtual try-on (VTO) experiences. TriMirror1 generates a 3D
avatar based on user inputs but falls short of realistic appearance. FXMirror2 analyzes a customer’s 3D image for
more lifelike avatars but its scalability is limited by the need for an extra 3D depth camera. Furthermore, these
avatar-based services require a significant burden to construct a 3D database, such as 3D clothes-modeling in a
multi-view studio with manual point cloud manipulation [58]. In 2D image-based VTO, deep neural networks
1https://www.trimirror.com/
2http://www.fxmirror.net/en/main
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Fig. 1. User demands in online clothes shopping, motivating generalizable, lightweight on-device video VTO.
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Fig. 2. Failures of a recent VTO GAN [20] in real-world videos due to various body sizes, backgrounds, and poses (i.e., domain
shifts).

(DNNs), especially generative adversarial networks (GANs), put clothes directly on a person instead of an
avatar [20, 24, 30, 47, 49]. Using these techniques, online shopping apps (e.g., Zeekit3) provide photo-based VTO.
However, they merely support static images and require users to upload personal photos, risking privacy breaches.
This work systematically studies practical VTO for mobile clothes shopping, aiming to fill the gap between

state-of-the-art GANs and real-world needs. Our study is grounded by a survey with >100 participants that
reveals several user preferences in online clothes shopping (Section 2). Specifically, the survey shows that users
want more vivid try-on experience using a video but without sharing their private information, such as body
type and appearance. This leads to the design goals for our MIRROR: a mobile system that puts clothes adaptively
on a moving customer in a recorded video, 100% on device without information sharing (Figure 1).
Challenges. Despite the recent development of VTO GANs, two significant challenges emerge:
• Data discrepancy: VTO GANs [20, 24, 30, 47] are mostly trained on the VITON dataset [24] that contains 2D
images capturing only upper bodies of specific sizes and limited poses against a white background. Since VTO is
a delicate task that needs to understand detailed human semantics and warp/overlay clothes accordingly, naïve
use of the existing GANs for real-world videos produces unfavorable outputs, due to significant domain shift.
An erroneous example (Figure 2) is when a target image is taken in a natural indoor environment and has a
user’s full-body shot or their upper-body shot with the arms put on the body.

3https://zeekit.me/
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Table 1. Latency and battery consumption of PF-AFN [20] on Samsung Galaxy S10 including Samsung Exynos M4 CPU and
ARM Mali-G76 mobile GPU.

Task Conversion latency Battery consumption

960×540 frame 3.04 sec -
900-frame video 57.3 min 805.8 mAh (23.7%)

• Computation burden: Even lightweight VTO GANs, such as PF-AFN [20] using knowledge distillation [27],
remain unsuitable for a mobile device due tomany neural layers and lack of full mobile GPU support. As shown in
Table 1, PF-AFN requires ∼3,041 ms to process a 960×540 image and consumes ∼24% battery capacity to process
a 900-frame video on Samsung Galaxy S10. Furthermore, typical optical flow-based feature tracking [1, 52],
widely used for infrequent DNN excutions in on-device video analytics, cannot be applied to our case. This is
because tracking VTO results needs pixel-wise dense optical flow that mandates another DNN execution [17, 31].

Approach. To tackle the problems, we design two novel components in MIRROR: (1) a generalizable VTO GAN,
called DIVTON (Domain-Invariant VTO Network) and (2) a lightweight VTO tracking VITOFF (VIrtual-Try-OFF).
DIVTON aims to achieve a dual objective: capturing not only (1) intricate human body semantics for precise

VTO but also (2) domain-invariant features for enhanced generalization. Prior efforts have focused on the former
challenge. Initial VTO GANs leverage inputs from sophisticated human parsers to acquire detailed human body
and clothing segments [24, 47, 49], making the generation module susceptible to parsing errors [30]. Conversely,
the latest appearance flow-based networks (AFNs) embrace a parser-free architecture [2, 20, 26], yet they can
still discern nuanced human semantics by distilling appearance flow from the human parsers during training.
However, both categories of VTO GANs falter when faced with domain shifts. In contrast, the core concept of
our DIVTON is harnessing the efficacy of coarse-grained but relatively domain-invariant human semantics for
domain generalization. By designing a tailored model architecture and a distillation-based training method, we
synergistically integrate the coarse-grained human parser with the AFN framework, providing generalizability
without compromising the AFN’s advantage to capture intricate human semantics devoid of paring errors.

Recognizing the computation burden of continuous DIVTON execution on mobile devices, VITOFF introduces
lightweight pose/clothing tracking in synthesized frames to reduce the frequency of DIVTON execution. In
contrast to the latest DNN-based optical flow techniques [29, 44, 45], VITOFF generates pixel-wise dense warping
flowwithout DNN computation. The core assumption in VITOFF is that temporal pixel changes in the (unbreakable)
body area exhibit high correlation. Since tracking individual pixels may be overkill in our context, VITOFF employs
selective optical flow [39] that meticulously tracks only key features within the body area. Using the sparse feature
flow as a high-quality anchor, we employ lightweight Thin-Plate Spline (TPS) transformation [4, 5] to generate
dense warping flow for the current frame. Introducing two complementary metrics to identify diverse tracking
errors, DIVTON is reactivated only when tracking outcomes prove unsatisfactory. Importantly, integrating
VITOFF with DIVTON elevates video VTO quality over using DIVTON alone due to the comprehensive use of
spatiotemporal information; errors exhibit temporal correlation, providing a consistent temporal view for users.
Lastly, given that customers want to see how the desirable clothes look on them before their final choices, a

video should be synthesized with multiple candidate clothes. To utilize the application characteristic, we partition
MIRROR operations into two phases: “Preview” and “Runtime.” The preview phase analyzes a video and archives
reusable information, fostering accelerated VTO for different clothes on the same video in the runtime phase.
Contributions. Our contributions are as follows:
• To our knowledge, MIRROR is the first on-device video VTO system for online clothes shopping. To ground
our study, we conduct a survey that derives practical application scenarios and user requirements (Section 2).
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Fig. 3. Illustration of survey results including preferences for online shopping and VTO.

• We design two novel components: (1) DIVTON that captures detailed human body semantics as well as domain-
invariant features from natural images and (2) VITOFF that minimizes neural-net computation while further
improving video VTO quality via high-quality keypoint selection (Sections 4-6).

• Extensive experiments show MIRROR’s superiority on multiple off-the-shelf Android smartphones. Compared
to PF-AFN,MIRROR achieves 6.5× better video VTO quality with 20.1× faster conversion and 16.9× less energy
consumption (Section 8).

2 SYSTEM REQUIREMENTS AND APPLICATION SCENARIO
We first conduct a survey to ground our study, concretizing user requirements and an application scenario for

MIRROR.
2.1 User Study and System Requirements
In order to investigate consumer requirements and objectives for virtual fitting services in the context of online
clothing shopping, this study employs judgmental sampling. Participants were recruited by posting the survey
link to the university’s online bulletin board. This method resulted in an initial participation of 103 individuals.
From this initial pool, a subset of 62 participants (ranging in age from 19 to 62, with a median age of 30; including
36 females) was chosen based on their alignment with the study’s purposes. Specifically, they met the dual criteria
of (1) engaging in online apparel shopping at least once a year and (2) expressing a discomfort stemming from
the inability to physically try on clothes during their online apparel shopping experiences.
The survey questions primarily focused on three aspects: (1) analyzing customers’ usage patterns and char-

acteristics during online shopping, (2) determining the requirements to meet users’ aspirations to achieve via
VTO services, and (3) identifying appropriate system design considerations accordingly. Specifically, the survey
consists of the following questions: (Q1) Which shopping device do you use for online shopping? (Q2) Given a
demo of either (i) a real-image-based or (ii) an avatar-based (TriMirror1) VTO platform, would you be willing to
use this service? (Q3) If you indicated a lack of willingness to use an avatar-based VTO, what were your reasons?
(Q4) Which media do you prefer for VTO, a video or an image? (Q5) How do you feel about sharing your personal
appearances with the VTO service provider? (Q6) How often would you like to update your appearances within
a VTO service? Our rationale behind the survey questions is to understand user preference and find out the most
appropriate design for the try-on service in online shopping that aligns with user requirements. The survey
results of each question are summarized in Figure 3.

In addition, our survey unveils four reasons why the participants responded that the inability to try on clothes
during online shopping is inconvenient. This pertains to their inability to confirm the suitability of clothing design,
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color, size, and texture. In this work, we concentrate on design and color compatibility, given their potential for
validation through the synthesis of clothes onto users’ images using VTO. The remaining two challenges will be
discussed in Section 9.
In light of our survey, we suggest five system requirements for VTO services:
R1. Preference for Mobile Devices: Figure 3a illustrates that a significant 74% of the participants prefer using

phones over desktops, laptops, and tablets when shopping online. This finding aligns with the trends
observed in m-commerce preferences [11, 12], indicative of the widespread accessibility of smartphones.
Inspired by this result, we focus on designing a VTO system for smartphones in this study.

R2. Real-Video-Based VTO: Figure 3b indicates that participants favor a real-person-based VTO system over an
avatar-based alternative. The primary reason cited for this preference is the disparity between avatars and
actual human bodies (Figure 3c). Furthermore, Figure 3d reveals that an impressive 84% of the participants
prefer a video-based VTO system rather than an image-based one. Consequently, our focus lies in developing
a real-person-based video VTO system.

R3. Real-World Generalizability: Insights from our survey also extend to users’ expectations concerning video
backgrounds. The results reveal that users expect 52% neat backgrounds, 35% white backgrounds, and
13% non-neat environments for VTO videos. The diverse preferences underscore the inherent challenges
in achieving uniformity across user-generated videos. Furthermore, human factors like hairstyle, body
shape, and pose introduce an additional layer of diversity in the videos. Given the intrinsic variations in
user-generated data, the system is required to be generalizable to accommodate the real-world diversity.

R4. Privacy Preservation: Figure 3e clearly reveals the privacy concerns, showing that a substantial 95% of the
participants are reluctant to send their personal appearance data to VTO service providers [25]. Additionally,
among the participants who expressed their willingness to try real-person-based VTO in Figure 3b, 76%
stated that they would be willing to use it if privacy is ensured (22% with no additional conditions and 2%
contingent on UI/UX assurances). As the best form of securing privacy, a VTO system is desired to run on
a smartphone without sending any data externally. As a result, we can guarantee that any user data for our
service will never be compromised or shared with other applications or third parties, including shopping
malls.

R5. Reusability: The survey reveals compelling user inclinations: 41% would record a video only once for VTO
and 32% would re-record if it is necessary (Figure 3f). This insight underscores the potential burden of
re-recording videos for most users. Therefore, a VTO system needs to reuse the same video for multiple
clothing interactions to enhance user convenience.

Taking into account the requirements, we propose MIRROR, a VTO system tailored for online shopping
scenarios. Our primary design principle is the on-device processing paradigm, ensuring that all operations occur
within the user’s device, without sending any sensitive data outside of MIRROR (R1, R4). The application focuses
on generating VTO results using users’ various real-world videos (R2, R3). Notably, we consider the computational
cost due to limited resources of mobile devices (R1), while also leveraging the user’s preference for reusing videos
for VTO (R5).

2.2 Application Scenario
Figure 4 illustrates the usage scenario for MIRROR, which aims to enhance the user experience and achieve the
goal of virtual fitting. In this scenario, users perform three main tasks within the MIRROR application, which
operates independently from the online shopping application they use.

2.2.1 Preparation Phase. Users initiate by downloading the MIRROR app to their smartphone. Using their
smartphones (R1), they are likely to record only a single video to save their time and labor (R5). The video can
include various poses and backgrounds (R2, R3). MIRROR executes its “Preview” mode completely on the user’s
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Fig. 4. Three-phase mobile clothes shopping scenario forMIRROR.

device, generating preliminary information from the video for later use. If the user wants to update the video,
they can re-record the video and execute the “Preview” mode for the updated video. Importantly, for privacy
preservation, the video never leaves the MIRROR app including external shopping applications (R4).

2.2.2 Browsing Phase. Users explore various clothing items in an online shopping application using their
smartphones. By employing touch and hold press, users can share the images of desirable clothes with MIRROR.
Then, these selected items will be added to the VTO list in MIRROR securely without any visibility to the user’s
screen, browser, or shopping applications (R4). Whenever a new item is added to the list, MIRROR enters its
“Runtime” mode, converting the user’s video into a VTO video featuring the selected item. The “Runtime” mode
runs on the smartphone as a background process, enabling users to continue shopping using the shopping
application. All processes are run in MIRROR, while the shopping application only provides clothes images
without any access to user’s video (R4). Given that the same video might be reused multiple times, the required
information calculated by the preview mode is used in the conversion (R5).

2.2.3 Decision-Making Phase. Users access the MIRROR VTO list, where the selected items are virtually put on
the user-provided video (R2, R3). Ideally, MIRROR should complete these video conversions before users conclude
their browsing phase. These VTO videos are expected to provide users with at least a rough sense of how well
the design and color of the items match their appearance, aiding in their purchasing decisions. Following the
decision-making process in the MIRROR application, users can return to the online shopping application to
finalize their purchase of the chosen clothing items. Notably, MIRROR does not share the VTO videos but only
the selected items with the shopping application for safeguarding user privacy (R4).

3 RELATED WORK

3.1 Image- and Video-Based Virtual Try-On
VITON [24] is the pioneering work on image-based VTO, which opens a VTO dataset and proposes GAN-based
image synthesis. To understand detailed human body semantics, early work on VTO GANs (depicted in Figure 5a)
is usually trained using human-clothes image pairs sourced from the VITON dataset. Self-supervision is employed
due to the absence of ground-truth labels for VTO outcomes [24, 47, 49]. In the training process, traditional VTO
networks typically take the following steps: (1) utilize external preprocessing networks [8, 22, 35] to remove the
clothing from an input image and generate multiple human representations, such as human parser, pose, and
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Fig. 5. Generations of VTO GANs. The dashed lines are activated only during training, whereas inference solely relies on
the solid-line pipeline. In the case of DIVTON (Figure 5c), intricate human semantics are learned by distilling appearance
flow from the warping module in Figure 5a during the training process. Furthermore, our model captures domain-invariant
features through the integration of an external coarse-grained human parser.

densepose, and (2) try to restore the original image by reapplying the clothing, guided by these rich human
representations. However, the computational demands of preprocessing networks are excessive for mobile devices.
In addition, the explicit dependency on preprocessing network inputs for the generation module, as depicted in
Figure 5a, makes the approach susceptible to parsing errors [30].
To alleviate the problems, PF-AFN [20] introduces a parser-free VTO GAN by eliminating the preprocessing

steps, which captures intricate human body semantics directly from a person image, as depicted in Figure 5b. To
this end, PF-AFN presents a distillation-based training method that includes a complex parser-based tutor DNN
and a parser-free student DNN [27], where the student DNN learns appearance flow that is distilled from the tutor
DNN’s warping module. The tutor (Figure 5a) is trained using the aforementioned self-supervision to generate a
synthetic image that virtually puts a target clothing on a person image, guided by its associated representations.
Then the student DNN is trained using an original image together with its corresponding appearance flow
and synthesized image driven by the tutor (i.e., distilled knowledge). Specifically, the student learns to restore
the original image by overlaying the original clothing onto the synthesized image by using appearance flow,
bypassing the need for explicit representations. Once training is complete, only the parser-free student DNN is
utilized for inference. The latest methods embrace the parser-free paradigm due to its error-resilient nature [2, 26].

However, both categories of existing VTO methods focus solely on capturing intricate human semantics within
the confined source domain, without considering the aspect of generalization to real-world scenarios. For instance,
the VITON dataset has significantly restricted formats, such as upper body images of a fixed size and restricted
poses on a (nearly) white background, as shown on the leftmost side in Figure 2. Our observations indicate that
the VTO GANs trained on this dataset experience substantial performance degradation when handling real-world
images (Figure 2). In contrast to the previous studies, we propose a tailored utilization of coarse-grained human
semantics combined with appearance flow, as depicted in Figure 5c. This approach achieves domain generalization
while simultaneously capturing intricate human semantics, improving performance with real-world images.

A few pieces of work have recently studied video VTO [17, 31, 34, 57]. The pioneering work [17] opens a
video VTO (VVT) dataset and proposes FW-GAN that warps both a previously synthesized frame and a clothing
image and fuses them to synthesize the current frame. FW-GAN executes multiple DNNs and DNN-based dense
optical flow for every frame. The latest methods also utilize dense optical flow [34, 57] and/or even propose
a transformer architecture [31]. However, they are extremely heavy to run on a mobile phone. Instead, this
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Fig. 6. Overview of two-phase MIRROR operation that supports the mobile clothes shopping scenario.

work offers lightweight on-device video VTO capabilities through infrequent execution of a VTO GAN and the
utilization of non-DNN sparse optical flow for warping synthesized frames.

3.2 On-Device Video Analytics
Given that running DNNs continuously to analyze every frame of a video on a mobile device is a huge burden,
there have been a number of studies to enable on-device, lightweight video understanding. Some prior work
utilizes both mobile devices and servers synergistically for fast and low-power video analytics [9, 50, 54], which
sacrifices privacy by sharing user data with the server. Another group of studies provides 100% on-device video
analytics by using lightweight video interpolation to execute a DNN infrequently. These studies offer application-
specific solutions through meticulous exploration of target applications, including object detection [1, 48], human
pose detection [52], and Android cursor detection [15]. While the prior work mostly focuses on detection-oriented
applications, this work is the first to investigate VTO, a more sophisticated GAN-based application, for on-device
video understanding and generation.

4 MIRROR OVERVIEW
This section provides an overview of MIRROR, a generalizable on-device video VTO system that aims to support
the application scenario in Section 2. MIRROR has two novel components, DIVTON and VITOFF, to provide
lightweight yet accurate video VTO. Specifically, DIVTON analyzes spatial information of an input frame for
accurate VTO with domain generalization but requires heavy DNN computation. On the other hand, VITOFF
provides lightweight two-step warping flow generation by analyzing spatiotemporal information of multiple
input frames and previous VTO results. VITOFF is faster and more energy efficient than DIVTON but accumulates
errors as executed for many frames continuously. For synergistic interplay of these two components, MIRROR
utilizes VITOFF by default while selectively executing DIVTON to preserve accuracy.
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To support the target scenario (i.e., mobile clothes shopping) efficiently, MIRROR divides DIVTON and VITOFF
operations into two phases, as illustrated in Figure 6.

4.1 Preview Phase
The preview phase (Figure 6a) runs only once for each input video in the preparation phase, which utilizes the
DIVTON and VITOFF previews to calculate reusable information and store the information in the context and
torso storages for later use. This aligns with the need for video reusability, as explained in Section 2.2. When the
MIRROR-preview receives a new 𝑙-th frame 𝑓 𝑟𝑎𝑚𝑒𝑙 (l > 1), it measures the quality of the VITOFF-preview results
and, if necessary, optionally runs the DIVTON-preview for low-quality results. We employ a flag SKIP_DNN for
each frame 𝑓 𝑟𝑎𝑚𝑒𝑙 , which is set to False when the DIVTON-preview is executed, or True otherwise.

Upon DIVTON-preview execution, it generates a contextual information 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑙 comprising a VITON-style
person image along with its associated coarse-grained parsing result. These components serve as domain
generalization for the appearance flow-based VTO GAN in the DIVTON-runtime. The underlying rationale is
that extracting a VITON-style image from the target domain reduces format disparities compared to the source
domain, while the coarse-grained parsing result effectively functions as a domain-invariant feature applicable to
various target domains. Furthermore, the DIVTON-preview generates a torso box 𝑡𝑜𝑟𝑠𝑜𝑙 to facilitate re-synthesis
of the VTO outcome with the original image, which enhances the robustness of VTO across diverse domains.
In the case of the VITOFF-preview, it tracks intricate human body semantics for the current frame, starting

from the𝑚𝑡ℎ-previous frame. Here, the𝑚𝑡ℎ-previous frame is defined as the most recent frame processed by the
DIVTON-preview. Specifically, the VITOFF-preview tracks the current torso box 𝑡𝑜𝑟𝑠𝑜𝑙 and generates a contextual
information 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑙 within this box that contains dense pixel-wise warping flow between the𝑚𝑡ℎ-previous
and current frames. Lastly, both types contextual features (𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑙 ) originating from the DIVTON and VITOFF
previews are stored in the context storage while the torso box (𝑡𝑜𝑟𝑠𝑜𝑙 ) is stored in the torso storage.

4.2 Runtime Phase
The runtime phase (Figure 6b) runs for each selected clothing item in the browsing phase, leveraging the DIVTON
and VITOFF runtimes to virtually put the clothing on the user’s video accurately and efficiently. Specifically, for
an input frame 𝑓 𝑟𝑎𝑚𝑒𝑙 , theMIRROR-runtime loads both the context information 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑙 and the torso box 𝑡𝑜𝑟𝑠𝑜𝑙
from the corresponding storages. Importantly, the pre-computation and caching of the essential VTO-related
data significantly accelerates the MIRROR-runtime process. After examining the SKIP_DNN flag, it executes the
DIVTON-runtime if the flag is False, or the VITOFF-runtime otherwise.
Both the DIVTON and VITOFF runtimes generate dual outputs for the input frame 𝑓 𝑟𝑎𝑚𝑒𝑙 , a synthesized

VTO image and a body mask. Notably, we add the body mask output for domain generalization due to its higher
domain-invariance compared to intricate human semantics. To this end, while the DIVTON-runtime computes
appearance flow-based VTO GAN on a person image and its associated parsing result in the loaded 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑙 ,
the VITOFF-runtime warps the𝑚𝑡ℎ-previous VTO results for the current frame using the torso-bounded dense
warping flow in the loaded 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑙 . The term𝑚𝑡ℎ-previous VTO results signifies outcomes corresponding to
the most recent frame processed by the DIVTON-runtime. Lastly, the MIRROR-runtime utilizes the loaded torso
box 𝑡𝑜𝑟𝑠𝑜𝑙 to overlay the synthesized image only exclusively onto the torso region of the original image. This
amalgamation produces the ultimate synthesis result 𝑜𝑢𝑡𝑝𝑢𝑡𝑙 .

5 DIVTON: ENABLING DOMAIN GENERALIZATION FOR VIRTUAL TRY-ON
This section presents details of DIVTON that is designed to resolve data discrepancy between the source and
target domains by capturing both intricate human semantics and domain-agnostic features. To this end, we
carefully integrate a coarse-grained human parser with the appearance flow-based network (AFN) [20]. Figure 7a
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Fig. 7. DIVTON architecture. While leveraging the distillation-based training pipeline of the baseline, DIVTON has unique
components that are marked in red: (1) lightweight warping module, (2) coarse parser, (3) additional parsing input 𝑝𝑎𝑟𝑠𝑖𝑛𝑔𝑠𝑡𝑢

only for the warping module, (4) parsing constraint loss between 𝑝𝑎𝑟𝑠𝑖𝑛𝑔𝑡𝑢𝑡 and 𝑝𝑎𝑟𝑠𝑖𝑛𝑔𝑜𝑢𝑡 , and (5) additional mask output
𝑚𝑎𝑠𝑘𝑜𝑢𝑡 and mask loss between𝑚𝑎𝑠𝑘𝑡𝑢𝑡 and𝑚𝑎𝑠𝑘𝑜𝑢𝑡 for background re-synthesis. Note that all input and output images
are in the form of the VITON dataset and only the blue region is executed at runtime.

depicts the DIVTON architecture, where only the parser-free student DNN in the blue box is executed during
runtime while the parser-based tutor DNN is used to distill appearance flow during training.

In contrast to the baseline AFN [20], DIVTON additionally utilizes a coarse-grained parsing result (i.e., domain-
invariant feature) as an auxiliary input (𝑝𝑎𝑟𝑠𝑖𝑛𝑔𝑠𝑡𝑢 ) to the student DNN to foster domain generalization. The
deployment of the coarse-grained parsing input is carefully engineered to mitigate the influence of parsing errors
on VTO outputs: exclusively allocated to the warping module, exempting the generation module from its impact.
In addition, DIVTON generates a domain-invariant body mask output (𝑚𝑎𝑠𝑘𝑜𝑢𝑡 ) to ensure smooth background
re-synthesis. Lastly, as depicted in Figure 7b, DIVTON additionally employs parsing loss and mask loss during the
distillation-based training to learn these domain-invariant features alongside with appearance flow. The newly
incorporated features in DIVTON are marked in red in Figure 7.
Furthermore, while the core part of DIVTON in Figure 7a operates in the runtime phase, the whole two-

phase pipeline of DIVTON includes careful preprocessing to polish a raw input frame in the preview phase and
postprocessing of its output frame for background re-synthesis in the runtime phase, which further mitigates
data discrepancy between the source and the target domains. We first describe the DIVTON core in Sections 5.1
to 5.2 and then the overall two-phase operation in Section 5.3.

5.1 Coarse-Grained Human Semantics: Domain-Invariant Feature
5.1.1 Problems. From the error cases on the VITON test data, we observe that PF-AFN is erroneous when the
arms are overlapped on the body; the arms are falsely erased and covered with a target clothing, as the rightmost
case in Figure 2.

5.1.2 Parsing Input. To get a hint for solving the problem, we also analyze other parser-based VTO GANs (e.g.,
ACGPN [49]) that utilize detailed human semantics as explicit inputs. Our finding is that the parser-based GANs
better distinguish the overlapped arms from the body. However, naïvely adding the preprocessing networks to the
AFN is not desirable since it has already been revealed that these heavy preprocessing networks are problematic
in terms of computational burden and error propagation [30].
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(a) VITON dataset (source)

Input Image ATR LIP PPP

(b) Real-world dataset (target)
Fig. 8. Example human segmentation results of three deep human parsers that are trained using coarse-grained (PPP) and
fine-grained parsing labels (ATR and LIP), respectively.

To deal with the problem, we deeply investigate what kind of human body semantics to use and how to use
the information for lightweight domain generalization without error propagation. First, among the three types of
human representations given by the preprocessing networks, parsing, pose, and densepose, we decide to use only
the parsing information (i.e., segmentation of each body part, 𝑝𝑎𝑟𝑠𝑖𝑛𝑔𝑠𝑡𝑢 in Figure 7a). This is because generating
densepose requires heavy computation while pose information might be too simple. Another reason is that the
parsing information is also useful for other purposes in our scenario, such as image preprocessing (Section 5.3)
and keypoint extraction for optical flow (Section 6.1).

Second, instead of active temple regression (ATR) [37] and look into person (LIP) [36] datasets commonly used
for fine-grained human parsers, we use Pascal-Person-Part (PPP) dataset [10]. We found ATR and LIP datasets’
rich labels for clothes are vulnerable to domain shifts (e.g., a clothing with unseen complex patterns or clothes on
the background). In contrast, the PPP dataset provides simplified labels only for person’s body, arms, face, and
legs. We train the parsing network in [35] on the dataset to focus on human parsing, which is coarse-grained
but robust to domain shifts. For example, Figure 8 shows human semantic segmentation results of deep human
parsers (ResNet-101) that are trained on the three datasets, ATR, LIP and PPP, respectively. While all the three
parsers provide fair segmentation results in the VITON (source) dataset (Figure 8a), the parsers trained on ATR
and LIP suffer significant segmentation errors in a real-world (target) dataset since they are weak for domain
shifts (Figure 8b).
Last but not least, in contrast to existing GANs [24, 47, 49] that input human representations to both the

warping and generation modules, we determine to input the coarse-grained parsing results only to the warping
module. The intuition is that while coarse-grained human semantics is important to distinguish the arms from the
body when warping a target clothing in the target domain, once the warped clothing (𝑐𝑙𝑜𝑡ℎ𝑒𝑠𝑠𝑡𝑢𝑤𝑎𝑟𝑝 in Figure 7a) is
given, using the coarse-grained semantics further in the generation module can bother fine-grained synthesis.

5.1.3 Parsing Constraint Loss. We also utilize the coarse-grained parser to calculate parsing constraint loss [17]
in training DIVTON. This is because each body part should be clearly distinguished in an output image, same as
the corresponding input image except the clothing-related part; DIVTON should preserve coarse-grained human
semantics. To this end, as shown in Figure 7b, we parse both the original image 𝑝𝑒𝑟𝑠𝑜𝑛𝑡𝑢𝑡 and the output image
𝑝𝑒𝑟𝑠𝑜𝑛𝑜𝑢𝑡 , generating two coarse-grained parsing results 𝑝𝑎𝑟𝑠𝑖𝑛𝑔𝑡𝑢𝑡 and 𝑝𝑎𝑟𝑠𝑖𝑛𝑔𝑜𝑢𝑡 . Given that 𝑝𝑒𝑟𝑠𝑜𝑛𝑡𝑢𝑡 and
𝑝𝑒𝑟𝑠𝑜𝑛𝑜𝑢𝑡 wear the same clothing (𝑐𝑙𝑜𝑡ℎ𝑒𝑠𝑡𝑢𝑡 ), we make 𝑝𝑎𝑟𝑠𝑖𝑛𝑔𝑡𝑢𝑡 supervise 𝑝𝑎𝑟𝑠𝑖𝑛𝑔𝑜𝑢𝑡 by calculating pixel-level
cross entropy loss [55].

Thus, cross entropy loss enforces a constraint that 𝑝𝑒𝑟𝑠𝑜𝑛𝑡𝑢𝑡 and 𝑝𝑒𝑟𝑠𝑜𝑛𝑜𝑢𝑡 have an identical parsing result [10]
for each individual pixel. For example, if the synthesized image 𝑝𝑒𝑟𝑠𝑜𝑛𝑜𝑢𝑡 exhibits a larger body size than the
original image 𝑝𝑒𝑟𝑠𝑜𝑛𝑡𝑢𝑡 , the parsing result of 𝑝𝑒𝑟𝑠𝑜𝑛𝑜𝑢𝑡 labels certain pixels as the body part, whereas the parsing
result of 𝑝𝑒𝑟𝑠𝑜𝑛𝑡𝑢𝑡 designates those same pixels as the background part, which increases the parsing constraint
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Fig. 9. The lightweight warping module in DIVTON. The last two correlation layers for processing high-resolution features
are excluded.

loss. In addition, since human posture directly influences the parsing results, the parsing constraint loss plays
a crucial role in distinguishing between arms and the torso where these body parts overlap. Importantly, our
generation module does not take a parsing input but is trained by the parsing loss. The loose coupling enables
the generation module to be guided by but not completely trust parsing results.

5.1.4 Body Mask Output and Mask Loss. For our target application, DIVTON’s output (𝑝𝑒𝑟𝑠𝑜𝑛𝑜𝑢𝑡 ) should be
re-synthesized with the raw input frame (Figure 10), where human parsing takes the key role again. Given
that the parsing result for the output image can be different from that for the input image (𝑝𝑒𝑟𝑠𝑜𝑛𝑠𝑡𝑢 ) due
to different clothes, relying on the input parsing result is dangerous. However, executing the coarse-grained
parser again for the output image at runtime significantly increases latency. To solve the problem, we design the
generation module to produce an additional mask output (𝑚𝑎𝑠𝑘𝑜𝑢𝑡 in Figure 7) that distinguishes the human and
the background in 𝑝𝑒𝑟𝑠𝑜𝑛𝑜𝑢𝑡 . To this end, we generate a mask label𝑚𝑎𝑠𝑘𝑡𝑢𝑡 from the parsing label 𝑝𝑎𝑟𝑠𝑖𝑛𝑔𝑡𝑢𝑡
(i.e., body vs. non-body) and calculate supervised 𝐿1 loss between𝑚𝑎𝑠𝑘𝑡𝑢𝑡 and𝑚𝑎𝑠𝑘𝑜𝑢𝑡 .

5.2 Lightweight Warping Module
Next, given that DIVTON aims to run on a mobile device, we analyze latency of PF-AFN and find room for
relieving its computation burden without sacrificing try-on quality.

5.2.1 Problems. We observe that PF-AFN requires 3.04 seconds to process a single 960×540 image on Samsung
Galaxy S10 (Table 1), too long for video VTO. Further analysis reveals that the warping module consumes most of
the time (2.41 seconds) since Android does not enable it to run on GPU currently. Although only the specific
grid_sample layer is not implemented for mobile acceleration, since it is executed twenty times in the warping
module, running the grid_sample layer on CPU and other operations on GPU results in frequent CPU-GPU
communication; running the warping module on both GPU and CPU is even slower than using only CPU.

5.2.2 Correlation Layer Removal. The warping module has a feature pyramid structure in Figure 9, which
originally includes five correlation layers [18] to generate dense warping flow by reflecting the all pixel-to-pixel
relationship between the person and clothes images. Since a correlation layer (purple color) requires 49× more
computation than the next convolution layer (yellow color), our goal is to find and remove redundancy in them.
The intuition is that since a person’s body movement is restricted in a certain range, neighboring pixels in a
clothing would have similar flow. Based on this intuition, we exclude the last two correlation layers, meaning that
the human-clothes relationship at the level of all-to-all pixel correlation is considered only for low-resolution
features while local correlation is still used for high-resolution features. This simple approach accelerates the
warping module 1.84× on CPU, achieving 1309 ms latency on Samsung Galaxy S10.
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frame 𝑓 𝑟𝑎𝑚𝑒𝑙 , generating a torso box 𝑡𝑜𝑟𝑠𝑜𝑙 and an input data 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑙 , including a VITON-style image 𝑝𝑒𝑟𝑠𝑜𝑛𝑣𝑡𝑜_𝑖𝑛

𝑙
and its

parsing result 𝑝𝑎𝑟𝑠𝑖𝑛𝑔𝑣𝑡𝑜_𝑖𝑛
𝑙

(𝑝𝑒𝑟𝑠𝑜𝑛𝑠𝑡𝑢 and 𝑝𝑎𝑟𝑠𝑖𝑛𝑔𝑠𝑡𝑢 in Figure 7, respectively). (2) The runtime phase postprocesses the

VITON-style output 𝑝𝑒𝑟𝑠𝑜𝑛𝑣𝑡𝑜_𝑜𝑢𝑡
𝑙

and its human mask𝑚𝑎𝑠𝑘𝑣𝑡𝑜_𝑜𝑢𝑡
𝑙

to generate a re-synthesized final output frame 𝑜𝑢𝑡𝑝𝑢𝑡𝑙 .

5.3 Deep Pre- and Post-processing for Domain Generalization
This section presents how DIVTON, trained on the confined VITON dataset, deals with various formats in target
data via pre- and post-processing in the preview and runtime phases, respectively.

5.3.1 Problems. An image in the representative VITON dataset consists of the upper body and face with similar
relative sizes on the white background, as the leftmost case in Figure 2. In contrast, naturally taken customer
images are significantly different in that they have various poses, image sizes, and backgrounds (i.e., domain
shift). Therefore inferencing these wild images directly results in disastrous outputs as the second left case in
Figure 2. For generalizable VTO, pre-/post-processing is necessary to make a wild image as similar as possible to
VITON data and synthesize an DIVTON output with the wild image again.

5.3.2 Preprocessing in the Preview Phase. As shown in Figure 10, DIVTON-preview preprocesses a raw input
frame 𝑓 𝑟𝑎𝑚𝑒𝑙 , generating VITON-style inputs (𝑝𝑒𝑟𝑠𝑜𝑛𝑣𝑡𝑜_𝑖𝑛

𝑙
and 𝑝𝑎𝑟𝑠𝑖𝑛𝑔𝑣𝑡𝑜_𝑖𝑛

𝑙
) for the DIVTON core and a torso

box 𝑡𝑜𝑟𝑠𝑜𝑙 for re-synthesizing VITON-style outputs with the background. To this end, we actively utilize the
corase-grained human parsing result 𝑝𝑎𝑟𝑠𝑖𝑛𝑔𝑙 .

To generate VITON-style inputs using the parsing result, we use the minimum and maximum locations of the
upper body parts including face, arms, and torso, and add padding to reliably incorporate the whole upper body,
resulting in a Region of Interest (RoI) represented as 𝑝𝑒𝑟𝑠𝑜𝑛𝑖𝑛

𝑙
. Then the RoI is fine-tuned to have a similar form

of VITON data. First, since VITON data has the white background, we recognize 𝑝𝑒𝑟𝑠𝑜𝑛𝑖𝑛
𝑙
’s background using

the parsing result and remove it. Next, given that VITON data has a fixed size (256,192), both the backgroundless
person image and its parsing result are resized using cubic [32] and nearest interpolation, respectively. Importantly,
the ratio of width and height remains the same to maintain the human shape [42] and any gap between the
resized RoI and the (256,192) rectangular is filled in white to be recognized as the background. The final results,
𝑝𝑒𝑟𝑠𝑜𝑛

𝑣𝑡𝑜_𝑖𝑛
𝑙

and 𝑝𝑎𝑟𝑠𝑖𝑛𝑔𝑣𝑡𝑜_𝑖𝑛
𝑙

, are stored in the context storage and used by the DIVTON core at runtime.
In addition, we observe that the VTO network can distort the face image even though a target clothing is not

put on the face. To preserve the face in the original image, we draw another (blue) bounding box excluding the
facial part, represented as 𝑡𝑜𝑟𝑠𝑜𝑙 , and store it in the torso storage.

5.3.3 Postprocessing in the Runtime Phase. DIVTON-runtime re-synthesizes DIVTON’s output image 𝑝𝑒𝑟𝑠𝑜𝑛𝑣𝑡𝑜_𝑜𝑢𝑡
𝑙

with the original image 𝑓 𝑟𝑎𝑚𝑒𝑙 by using the mask output 𝑚𝑎𝑠𝑘𝑣𝑡𝑜_𝑜𝑢𝑡
𝑙

and the torso box 𝑡𝑜𝑟𝑠𝑜𝑙 . Importantly,
all the pixels in the original image that are out of the torso box are maintained, including the facial part. To
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Fig. 11. Two-phase operation of VITOFF: In the preview phase, (1) sparse keypoints K𝑙 are tracked using optical flow, (2)
TPS transformation generates a dense warping flow 𝑓 𝑙𝑜𝑤 (𝑙−𝑚)→𝑙 based on the sparse flow, and (3) the torso box 𝑡𝑜𝑟𝑠𝑜𝑙 is
tracked from 𝑡𝑜𝑟𝑠𝑜𝑙−𝑚 by using the sparse flow. In the runtime phase, 𝑝𝑒𝑟𝑠𝑜𝑛𝑜𝑢𝑡

𝑙
and𝑚𝑎𝑠𝑘𝑜𝑢𝑡

𝑙
are generated by warping the

previous results 𝑝𝑒𝑟𝑠𝑜𝑛𝑜𝑢𝑡
𝑙−𝑚 and𝑚𝑎𝑠𝑘𝑜𝑢𝑡

𝑙−𝑚 with 𝑓 𝑙𝑜𝑤 (𝑙−𝑚)→𝑙 and re-synthesized for the final output 𝑜𝑢𝑡𝑝𝑢𝑡𝑙 .

re-synthesize only the torso area, we first crop and resize the two outputs, producing torso-bounded outputs
𝑝𝑒𝑟𝑠𝑜𝑛𝑜𝑢𝑡

𝑙
and𝑚𝑎𝑠𝑘𝑜𝑢𝑡

𝑙
that match the original torso size. The white background in 𝑝𝑒𝑟𝑠𝑜𝑛𝑜

𝑙
is recognized by the

mask output𝑚𝑎𝑠𝑘𝑜𝑢𝑡
𝑙

and replaced by the original scene. With the recovered background, 𝑝𝑒𝑟𝑠𝑜𝑛𝑜
𝑙
overwrites the

torso area in the original image, resulting in the final output frame 𝑜𝑢𝑡𝑝𝑢𝑡𝑙 .

6 VITOFF: TRYING OFF COMPUTATION BURDEN FOR VIDEO VTO
Although DIVTON provides domain-invariant VTO, the use of a deep human parser (i.e., additional DNN)
increases computation burden compared to the parser-free baseline PF-AFN. To reduce latency and battery
consumption on mobile devices, virtual try-off (VITOFF) avoids the heavy use of DIVTON by selectively recycling
its previous output frames for later frames. As shown in Figure 11, VITOFF tracks and uses the differences between
the current frame 𝑓 𝑟𝑎𝑚𝑒𝑙 and the two previous frames, (1) the latest DIVTON-processed frame 𝑓 𝑟𝑎𝑚𝑒𝑙−𝑚 and
(2) the latest-tracked frame 𝑓 𝑟𝑎𝑚𝑒𝑙−1, to convert the previous VTO outputs (𝑡𝑜𝑟𝑠𝑜𝑙−𝑚 , 𝑝𝑒𝑟𝑠𝑜𝑛𝑜𝑢𝑡𝑙−𝑚 and𝑚𝑎𝑠𝑘𝑜𝑢𝑡

𝑙−𝑚)
into the current ones in a lightweight manner. VITOFF’s tracking results for the current frame, torso box 𝑡𝑜𝑟𝑠𝑜𝑙 ,
VTO result 𝑝𝑒𝑟𝑠𝑜𝑛𝑜𝑢𝑡

𝑙
and body mask𝑚𝑎𝑠𝑘𝑜𝑢𝑡

𝑙
, are post-processed to produce a final VTO output frame 𝑜𝑢𝑡𝑝𝑢𝑡𝑙 ,

as described in Section 5.3. VITOFF quality is measured by two synergistic metrics and DIVTON is run if the
quality is unsatisfactory. Lastly, VITOFF operation is also divided into two phases, which further reduces the
computation burden at runtime.

6.1 Selective Keypoint-Based Warping Flow
VITOFF provides two-step warping flow generation in the preview phase: (1) optical flow with coarse-grained
parsing-guided selective keypoints and (2) keypoint-based pixel-wise dense flow using Thin-Plate Spline (TPS)
transformation [5].
(1) Sparse Optical Flow with Keypoint Selection.We exploit optical flow to predict the movement of pixels between
two frames in a video. Although dense optical flow tracks every pixel and shows good performance [6, 7, 29, 44, 45],
it is difficult to apply to mobile devices due to heavy computation. In addition, it may not be necessary to track
every pixel separately since body pixels would move together as a group. In this case, TPS transformation [5]
can approximate the movement of the entire frame based on specific anchor pixels, which greatly reduces the
computational overhead. We explain the details of TPS later in this section. Therefore, we select up to only 30
important pixels that are necessary for VTO, i.e., keypoints, and generate sparse optical flow [39] by tracking only
these keypoints.
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Careful keypoint selection is important for lightweight but accurate VTO frame generation and to this end,
we exploit coarse-grained human semantics again. To extract the <30 keypoints (K𝑙−𝑚) efficiently from a
frame 𝑓 𝑟𝑎𝑚𝑒𝑙−𝑚 processed by DIVTON-preview, we adopt Oriented FAST and Rotated BRIEF (ORB) feature
extractor [43] whose latency is less than 10 ms, with some modifications as below. First, among the keypoints
given by the ORB extractor, we ignore those outside of the upper body (i.e., body segment in 𝑡𝑜𝑟𝑠𝑜𝑙−𝑚). The
parsing result used for DIVTON is used again here to recognize the upper body. In addition, a straightforward
option for keypoint selection, i.e., the highest score first selection, often results in the keypoints that are densely
located in a small area where important pixels are clustered. However, closely clustered keypoints can result in
the omission of keypoints with slightly lower scores, which are still vital for representing the entire pixels as
anchor points. To address the problem, we apply the non-max suppression (NMS) that is widely used for reducing
the number of box proposals in object detection [21]: repetitively selecting the highest score keypoint while
removing the neighboring keypoints within 20 pixels of every selected keypoint. Lastly, the current keypoints K𝑙
are tracked from the latest-tracked keypoints K𝑙−1.
(2) Dense Warping Flow. Given the two selective keypoint sets K𝑙−𝑚 and K𝑙 , we generate a dense warping flow for
entire pixels from the𝑚𝑡ℎ-previous torso-bounded frame 𝑝𝑒𝑟𝑠𝑜𝑛𝑡𝑜𝑟_𝑖𝑛

𝑙−𝑚 to the current frame 𝑝𝑒𝑟𝑠𝑜𝑛𝑡𝑜𝑟_𝑖𝑛
𝑙

, denoted
as 𝑓 𝑙𝑜𝑤 (𝑙−𝑚)→𝑙 . We use TPS transformation, a smooth interpolation method used for shape matching [4], to find
the source pixels of the current frame 𝑝𝑒𝑟𝑠𝑜𝑛𝑡𝑜𝑟_𝑖𝑛

𝑙
’s pixels in the𝑚𝑡ℎ-previous frame 𝑝𝑒𝑟𝑠𝑜𝑛𝑡𝑜𝑟_𝑖𝑛

𝑙−𝑚 . The intuition
is that the carefully selected keypoints can act as high quality anchors, good enough to generate dense warping
flow via lightweight TPS transform.
Specifically, given a set of keypoints K and a pixel 𝑝 in a frame, TPS transforms the input pixel location

𝑝 = (𝑝𝑥 , 𝑝𝑦) to another pixel 𝑞 = (𝑞𝑥 , 𝑞𝑦) as:
𝑇𝑃𝑆 (K, 𝑝) = 𝑎1 + 𝑎2 · 𝑝𝑥 + 𝑎3 · 𝑝𝑦 +

∑︁
𝑘∈K

𝑤𝑘 · 𝑢 (𝑘, 𝑝)

where 𝑢 (𝑘, 𝑝) = | |𝑘 − 𝑝 | |22 · 𝑙𝑜𝑔( | |𝑘 − 𝑝 | |2).
(1)

We optimize the TPS parameters 𝑎 = {𝑎1, 𝑎2, 𝑎3} and𝑤 = {𝑤𝑘 |𝑘 ∈ K} to retrieve the source pixels of the current
𝑙-th frame’s pixels in the𝑚𝑡ℎ-previous frame, as below:

𝑎∗
𝑙
,𝑤∗

𝑙
= 𝑎𝑟𝑔𝑚𝑖𝑛𝑎,𝑤

1
|K𝑙 |

∑︁
𝑘∈K𝑙

| |𝑇𝑃𝑆 (K𝑙 , 𝑘) − 𝑘 ′ | |2, (2)

where 𝑘 ′ is the ground-truth source keypoint (𝑘 ′ ∈ K𝑙−𝑚) in the𝑚𝑡ℎ-previous frame for each current keypoint 𝑘
(∈ K𝑙 ); the TPS parameters are obtained based on the sparse keypoint flow. The obtained TPS parameters are
then used to calculate the source pixel location in 𝑝𝑒𝑟𝑠𝑜𝑛𝑡𝑜𝑟_𝑖𝑛

𝑙−𝑚 for every pixel in 𝑝𝑒𝑟𝑠𝑜𝑛𝑡𝑜𝑟_𝑖𝑛
𝑙

. Finally, the dense
warping flow 𝑓 𝑙𝑜𝑤 (𝑙−𝑚)→𝑙 is acquired by computing pixel-wise location differences between the source pixels
and the current pixels. The warping flow is stored in the context storage as 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑙 .

6.2 Warping & Bounding Box Tracking
VITOFF-runtime generates the current VTO outputs (𝑝𝑒𝑟𝑠𝑜𝑛𝑜𝑢𝑡

𝑙
and 𝑚𝑎𝑠𝑘𝑜𝑢𝑡

𝑙
) by warping the 𝑚𝑡ℎ-previous

outputs (𝑝𝑒𝑟𝑠𝑜𝑛𝑜𝑢𝑡
𝑙−𝑚 and𝑚𝑎𝑠𝑘𝑜𝑢𝑡

𝑙−𝑚) using the dense warping flow 𝑓 𝑙𝑜𝑤 (𝑙−𝑚)→𝑙 , respectively. We obtain a pixel
value in the current VTO image (𝑝𝑒𝑟𝑠𝑜𝑛𝑜𝑢𝑡

𝑙
or 𝑚𝑎𝑠𝑘𝑜𝑢𝑡

𝑙
) by gathering its source pixels in the previous VTO

output (𝑝𝑒𝑟𝑠𝑜𝑛𝑜𝑢𝑡
𝑙−𝑚 or𝑚𝑎𝑠𝑘𝑜𝑢𝑡

𝑙−𝑚), with bilinear interpolation or nearest interpolation, respectively. Importantly,
the runtime warping with an existing flow is much simpler than dense flow generation in the preview phase.

After warping, VITOFF-runtime re-synthesizes 𝑝𝑒𝑟𝑠𝑜𝑛𝑜𝑢𝑡
𝑙

with the original image 𝑓 𝑟𝑎𝑚𝑒𝑙 using𝑚𝑎𝑠𝑘𝑜𝑢𝑡𝑙
, as in

Section 5.3. To this end, VITOFF-preview tracks the torso box and stores it in the torso storage (Figure 11). Given
that box tracking does not need a pixel-wise dense flow, we calculate the average displacement of the keypoint
locations between K𝑙−𝑚 and K𝑙 and move 𝑡𝑜𝑟𝑠𝑜𝑙−𝑚 to 𝑡𝑜𝑟𝑠𝑜𝑙 accordingly.
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Fig. 12. Failure cases that could be detected by our quality metrics: Warping Error (WE) and Keypoint Error (KE). With
different strengths, WE and KE capture different failure cases, Cases #1 and #2, respectively.

6.3 Synergistic Quality Metrics
As the gap between 𝑓 𝑟𝑎𝑚𝑒𝑙−𝑚 and 𝑓 𝑟𝑎𝑚𝑒𝑙 increases, the quality of VITOFF-preview’s warping flow decreases
accordingly. Therefore it is necessary to evaluate the current warping flow and execute DIVTON-preview if its
quality is not satisfactory, as shown in Figure 6a. Without any ground-truth frame to evaluate VITOFF results,
we propose two synergistic evaluation metrics that capture different types of tracking errors.

6.3.1 Warping Error (WE). The first quality metric, named warping error (WE), evaluates whether the dense
warping flow 𝑓 𝑙𝑜𝑤 (𝑙−𝑚)→𝑙 successfully transforms 𝑝𝑒𝑟𝑠𝑜𝑛𝑡𝑜𝑟_𝑖𝑛

𝑙−𝑚 to 𝑝𝑒𝑟𝑠𝑜𝑛𝑡𝑜𝑟_𝑖𝑛
𝑙

; WE is defined as the difference
between the warped frame and the ground-truth frame 𝑝𝑒𝑟𝑠𝑜𝑛𝑡𝑜𝑟_𝑖𝑛

𝑙
. Our intuition is that if the warping in the

preview phase successfully tracks pose differences with the original clothing put on, runtime warping with a
target clothing would also be successful.

For WE, we use normalized cross-correlation (NCC) [56] between two images, taking 1−NCC for WE. Impor-
tantly, naïve use of WE is vulnerable to domain shift, such as colors of the clothes and the background: when the
clothes and the background have similar colors (i.e., high correlation), the WE can be low even though the actual
transformation is wrong. To prevent this problem, we calculate a domain-adaptive WE threshold 𝛿 using the first
frame of a video, which changes dynamically for each video by considering clothes and background. Specifically,
we move the first frame by 𝛼 pixels along the x- and y-axis, respectively, and compute NCC between the moved
and the original frames. The averaged value of NCCs becomes 1 − 𝛿 . When the background and clothing have a
similar color, the artificial NCCs would increase, resulting in a smaller (tighter) WE threshold 𝛿 .

6.3.2 Keypoint Error (KE). Low WE does not necessarily mean that users are satisfied with the VITOFF quality.
Despite small WE (average error), if the small errors are intensely located at a visually important region, users can
recognize the VTO output as a failure. To capture this type of errors, we focus on the fact that keypoint locations
are likely to get more attention from users. Specifically, we separately measure if the locations of source keypoints
(K𝑙−𝑚) are estimated correctly from the current keypoints (K𝑙 ), defining the estimation error as keypoint error
(KE). The error distance for KE is the average 𝐿2 distance between K𝑙−𝑚 and each of the source keypoints derived
by TPS transformation with optimized parameters a* and w* from K𝑙 as:

𝐾𝐸 =
1

|K𝑙 |
∑︁
𝑘∈K𝑙

| |𝑇𝑃𝑆 (K𝑙 , 𝑘 ;𝑎∗𝑙 ,𝑤
∗
𝑙
) − 𝑘 ′ | |2 (3)
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6.3.3 Synergy between WE and KE. While severe errors can be captured by both WE and KE, it is important to
note that WE and KE are complementary by capturing different types of failure cases, as shown in Figure 12
where errors are highlighted in red dotted boxes. Case #1 in Figure 12 illustrates a typical case that is captured by
WE but not KE. In this case, the dense warping flow fails to track that the arms in 𝑝𝑒𝑟𝑠𝑜𝑛𝑡𝑜𝑟_𝑖𝑛

𝑙−𝑚 become hidden
in 𝑝𝑒𝑟𝑠𝑜𝑛𝑡𝑜𝑟_𝑖𝑛

𝑙
, falsely displaying the arms in 𝑝𝑒𝑟𝑠𝑜𝑛𝑜𝑢𝑡

𝑙
. The keypoints located between the arms and the body

in 𝑝𝑒𝑟𝑠𝑜𝑛𝑡𝑜𝑟_𝑖𝑛
𝑙−𝑚 are still there in 𝑝𝑒𝑟𝑠𝑜𝑛𝑡𝑜𝑟_𝑖𝑛

𝑙
even though the arms disappear, resulting in low KE. However, the

false arm display causes significant pixel differences, enabling WE to capture the failure. On the other hand, Case
#2 in Figure 12 shows a failure case where KE is high but WE is low. In this case, the ground-truth and estimated
frames are similar on average (i.e., low WE) but some important regions in 𝑝𝑒𝑟𝑠𝑜𝑛𝑜𝑢𝑡

𝑙
look awkward (bent elbow

and face). Given that the small important regions contain many keypoints, KE captures the failure.
We determine that a generated frame’s quality is high only if WE < 𝛿 and KE < 0.10, and low otherwise. We

investigate the impact of the hyperparameters in Section 8.4.

7 IMPLEMENTATION
We implementMIRROR onmultiple Android smartphones with Kotlin, considering an image resolution of (960,540)
in a vertical environment.4 DIVTON is trained on the VITON dataset [24] having (256×192) images, using 4
TITAN RTX GPUs and the PyTorch framework [41]. The parsing constraint loss is multiplied by 0.5 and added to
the final loss. In the same environment, our deep human parser (ResNet-101) is trained on the Pascal-Person-Parts
dataset [10] that provides coarse-grained body parts segmentation. For inference, we use ONNX Runtime [16]
for model execution and NNAPI, a unified interface to CPU, GPU, and neural-net accelerators, for acceleration.
While the warping module is executed with CPU due to the grid_sample operation, the rest of DIVTON are
executed with GPUs. Image processing operations are implemented via C++ and OpenCV with NDK. We extract
300 keypoint candidates with ORB feature [43] and select up to 30 of them using the upper body segmentation
and NMS.

8 EVALUATION
We extensively evaluate the VTO quality and computation burden of MIRROR on Android smartphones.
Test Datasets.Without an existing real-world VTO dataset, we collected test videos from 31 people, with 540×960
resolution and 30-second length at 30 fps, resulting in a total of 27,900 frames. We recruited among the target
users derived from the survey in Section 2, those who agreed to use their videos for research purposes. Figure 13
shows thumbnails of our real-world videos, which have diverse genders, backgrounds, poses, types of clothes,
hair lengths, heights, zoom rates, angles, etc. We asked the participants to film their videos as if they are in front
of a mirror trying on clothes, which involves various postures and backgrounds. We randomly selected three
different clothes for each video, resulting in a total of 93 different clothes used for evaluating the 31 videos. We
also use the VITON test data [24] to inspect MIRROR on a curated dataset.
VTO Quality Metrics. For comprehensive evaluation, we measure the quality of the VTO results for both
individual frames and entire videos. First, each VTO frame is evaluated using Learned Perceptual Image Patch
Similarity (LPIPS) [53] that is widely used to evaluate synthesized images. However, two videos can have
significantly different VTO quality even if their VTO frames have similar LPIPS; if the erroneous locations change
frequently in different VTO frames, the video looks more noisy and is recognized more erroneous. To capture the
time-domain smoothness, an entire VTO video is evaluated using Fréchet Video Distance (FVD) [17, 46]. The
lower LPIPS and FVD, the better the VTO quality.

4The implemented code can be found at https://github.com/Ds-Kang/MIRROR.
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Fig. 13. Thumbnails of our real-world video dataset collected from 31 participants.

Table 2. MIRROR performance on Samsung Galaxy S10 that shows each component’s effectiveness: (1) Region of Interest (RoI),
(2) background removal (BR), (3) mask output (MO), (4) parsing input (PI), (5) parsing loss (PL), (6) lightweight warping (LW),
(7) lightweight interpolation (VITOFF), and (8) storages (Context+Torso). The lower the metrics, the better the performance.

Method VITON Real World (30-second Videos)

VTO Network Lightweight Storage LPIPS LPIPS FVD Average Conversion
Interpolation Latency (ms) Time (min)

PF-AFN (Baseline) N/A N/A 0.250 0.682 26.59 3041±342 57.3
RoI N/A N/A 0.250 0.134 13.61 5204±308 121.6
RoI + BR N/A N/A 0.251 0.090 9.00 5175±358 119.2
RoI + BR + MO N/A N/A 0.249 0.093 8.08 5306±320 123.1
RoI + BR + MO + PI N/A N/A 0.247 0.087 6.87 5350±343 119.0
RoI + BR + MO + PI + PL N/A N/A 0.243 0.086 6.57 5343±284 122.8
RoI + BR + MO + PI + PL + LW (DIVTON) N/A N/A 0.244 0.088 6.96 4367±302 100.3
DIVTON VITOFF (DOF [19]) N/A N/A 0.120 11.00 1649.2 39.2
DIVTON VITOFF (w/o NMS) N/A N/A 0.091 4.14 377.3 7.32
DIVTON VITOFF N/A N/A 0.090 4.11 375.0 7.20
DIVTON VITOFF Context+Torso N/A 0.090 4.11 170.1 2.85

8.1 Overall Quantitative Analysis
We sequentially add each component in MIRROR to the baseline PF-AFN to investigate its impact. We measure
LPIPS and FVD under the VITON dataset (source domain) and our real-world dataset (target domain). We also
measure average per-frame latency and the end-to-end video conversion time on Samsung Galaxy S10. Table 2
shows the results.

8.1.1 Effectiveness of DIVTON. First of all, the baseline performance is significantly degraded in the real-world
dataset (2.73× worse LPIPS), confirming PF-AFN’s vulnerability to domain shifts. In contrast, our coarse-grained
human semantics-based deep preprocessing techniques (i.e., RoI and BR) remarkably improve VTO quality over
the baseline in terms of both LPIPS and FVD in the real-world dataset. RoI crops the upper body and locates it at
the center of an image, as a VITON image, which achieves 5.1× better LPIPS than vanilla PF-AFN. Whitening
noisy backgrounds in BR further improves LPIPS 32% and FVD 34%. The results verify the effectiveness of
DIVTON’s deep preprocessing on resolving format disparities between wild images and VITON images. Next,
both image and video qualities are improved when gradually adding the DIVTON components: mask output
(MO), parsing input (PI), and parsing loss (PL). The improvement is higher in the real-world data than the VITON
data, and higher in FVD than LPIPS. The results highlight that our methods are particularly helpful for domain
generalization and smooth video VTO in the time domain. In addition, our lightweight warping (LW) module
reduces latency by 18% without significantly sacrificing the quality.
On the other hand, the quality gain in DIVTON comes with additional computation due to the use of a

DNN-based coarse-grained human parser, which nearly doubles the video conversion time compared to PF-AFN.
This clearly shows the reason why VITOFF is needed for on-device video VTO.
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Target

Clothes

Reference

Images

PF-AFN

(parser-free)

ACGPN

(parser-based)

DIVTON

(ours)

Ablated versions of DIVTON with zoomed-in images

RoI + BR RoI + BR + MO w/o LW Full

Fig. 14. Qualitative analysis comparing DIVTON (ours) with PF-AFN, ACGPN, and ablated DIVTON versions. The red boxes
highlight identified errors, encompassing human body shape distortion, challenges in distinguishing the body from the
background, and difficulties in discerning arms from other body parts.

8.1.2 Effectiveness of VITOFF and Storage. Interestingly, combining VITOFF with DIVTON remarkably reduces
the number of DIVTON executions, making almost all frames in a video (93.6%) processed by DNN-less lightweight
tracking. This verifies that our keypoint selection using coarse-grained human semantics results in good-quality
keypoints, enough for robust VTO tracking without executing DIVTON. With much less DNN executions,
VITOFF reduces the latency 11.6 times compared to the DIVTON-only case, requiring only several minutes for
end-to-end video conversion. In addition, VITOFF even improves the VTO video quality (FVD) 41% over DIVTON
by generating a smoother VTO video with careful use of spatiotemporal information.

In contrast, an ablated version of VITOFF with an existing non-DNN dense optical flow (DOF) technique [19],
significantly degrades LPIPS and FVD compared to the proposed VITOFF with selective keypoint-based warping
flow (and even worse than the DIVTON alone) and has less improvement in latency. This is because without
keypoint extraction, VITOFF (DOF) utilizes only the WE error metric and fails to catch unsatisfactory tracking
results in many cases. Another ablation VITOFF (w/o NMS) selects keypoints using coarse-grained human
semantics but naïvely depending on high scores without using NMS. To ensure a fair comparison, we used 20
keypoints, which corresponds to the average number of keypoints selected when using NMS. VITOFF (w/o NMS)
also underperforms our full VITOFF in LPIPS and FVD scores, primarily because the selected keypoints fail to
represent the complete pixel content of the RoI in areas devoid of keypoints. The ablation study shows superiority
of our tailored design for VITOFF.
Finally, utilization of our context and torso storages results in 2.5× further acceleration of MIRROR’s video

conversion at runtime, verifying the effectiveness of the two-phase operation of MIRROR.
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(a) DIVTON, which causes errors at different locations

(b) MIRROR, which causes correlated errors between frames.

Fig. 15. Qualitative results for consecutive frames.

8.2 Qualitative Analysis
To evaluate the qualitative results of DIVTON and VITOFF, we uploaded a video comparing the baseline (PF-
AFN [20]), another existing parser-based GAN (ACGPN [49]), DIVTON-only, andMIRROR (DIVTON and VITOFF)
in various cases.5

8.2.1 Effectiveness of DIVTON components. Figure 14 demonstrates the qualitative results of PF-AFN, ACGPN
and our DIVTON using four examples: from top to bottom, (1) a relatively easy case, (2) an arm put on the body,(3)
misalignment in the length of arm and the length of upper clothing, and (4) different width between original
and target short sleeves. In all cases, the main challenges are to adapt to various body sizes and locations and
distinguish the body from the background and the arms from the other parts.
As shown in Figure 14, vanilla PF-AFN completely fails in all cases since it naïvely assumes that the human

body is located at the center of an image with a certain size. ACGPN better localizes the human body by using
the parsing inputs but still fails due to parsing errors. In contrast, DIVTON produces remarkably improved VTO
results in all cases. Taking a deeper look, with our human semantics-based deep preprocessing (RoI + BR), VTO
results are significantly improved but the arms are still not distinguished correctly, which causes various errors
(red dotted boxes). Adding MO prevents the background from invading the body part and adding PI and PL
detects the arms most accurately. Lastly, LW does not significantly harm the VTO quality.

8.2.2 Effectiveness of VITOFF. Figure 15 compares the DIVTON-only case with MIRROR when converting
consecutive frames. Using only DIVTON for all frames ignores temporal information, which causes erroneous
locations (red boxes) to change frequently as time proceeds. In contrast, MIRROR generates correlated errors in
the time domain, resulting in a smoother VTO video. This qualitative example explains why MIRROR provides
similar LPIPS but significantly better FVD compared to using only DIVTON in Table 2.

8.3 Impact of Coarse-Grained Human Parser
Table 3 evaluates VTO performance of DIVTON when fine- and coarse-grained parsing labels (PPP [10]) are
used to train the deep human parser in DIVTON, respectively. For fine-grained parsing labels, we utilize LIP [36]
that labels the VITON dataset and another widely used ATR [37]. The results in Table 3 show that DIVTON
5https://youtu.be/CrwxUW8cXQQ
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Table 3. Impact of using using coarse-grained and fine-grained parsing labels on DIVTON.

Method VITON Real-world Dataset

LPIPS LPIPS FVD
Baseline (PF-AFN) 0.250 0.682 26.59
DIVTON with ATR [37] (fine-grained) 0.245 0.110 10.42
DIVTON with LIP [36] (fine-grained) 0.249 0.124 9.85
DIVTON with PPP [10] (coarse-grained, our choice) 0.244 0.088 6.96
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Fig. 16. Impact of the WE and KE parameters. In the color bars, red and blue lines are PF-AFN and DIVTON performance,
respectively, both after preprocessing. The lower the metrics, the better the quality.

outperforms the baseline PF-AFN when using all the three label options, which verifies the effectiveness of using
a deep human parser for domain generalization instead of direct image generation. On the other hand, both LIP
and ATR perform comparably to PPP (our choice) in the VITON test dataset but significantly degrade DIVTON
performance in terms of both LPIPS and FVD in the real-world dataset. This is because fine-grained human
segmentation is vulnerable to domain shifts, causing nontrivial parsing errors in the real-world dataset. The
results demonstrate that coarse-grained human semantics effectively serves as a domain-invariant feature for
generalizable VTO.

8.4 Impact of Hyperparameters
Figure 16 analyzes the impact of VITOFF parameters in Section 6.3, the KE threshold and the artificial pixel
movement 𝛼 for WE threshold. First, MIRROR’s FVD is significantly better than PF-AFN with our deep pre-
processing (red bar) and DIVTON (blue bar) regardless of these parameters since VITOFF utilizes temporal
information effectively. On the other hand, MIRROR’s LPIPS is sensitive to the two parameters; using tighter
thresholds increases VTO image quality at the expense of computation burden. Considering the trade-off, we aim
to minimize the computation burden while providing LPIPS performance similar to PF-AFN with our human
semantics-based preprocessing. To this end, we set the KE threshold to 0.10 and 𝛼 to 10 pixels for the results in
Table 2.

8.5 Computational Efficiency
Next, we evaluate MIRROR’s on-device computation overhead in terms of latency and battery consumption. In
our target scenario, mobile devices have to perform VTO computations in the background while the user is
shopping and present the VTO videos before the checkout when a decision is made. Since DIVTON (DNN only)
consumes significant battery and conversion time (Figure 17), we prioritize computational efficiency in VITOFF
to suit our scenario. The battery consumption is measured by the Android battery historian.
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Fig. 17. Computational overhead for video VTO with three smartphones.
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Fig. 18. Latency for each operation in MIRROR.

8.5.1 Analysis on End-to-end Video Conversion. Figure 17 shows the battery consumption and total video
conversion time with three commodity smartphones (Samsung Galaxy S10, Xiaomi Redmi K40 Gaming, and
LG V50) and a 30-second long video. We compare the four methods: PF-AFN only (i.e., baseline), DIVTON only,
MIRROR (Preview + Runtime), and MIRROR (Runtime). The results are consistent in different smartphones as
follows: First, running a VTO GAN for the entire video takes a huge computational overhead (PF-AFN), even
more so with the use of a deep human parser (DIVTON). On the other hand, MIRROR (Preview + Runtime)
remarkably reduces both battery consumption and conversion time with lightweight video interpolation in
VITOFF. Excluding the preview phase from MIRROR by using the context and torso storages further reduces
computation overhead. Overall,MIRROR (Runtime) results in an order of magnitude less computation on all three
smartphones compared to the baseline, e.g., 16.9× less battery consumption and 20.1× faster video conversion in
Samsung Galaxy S10.

8.5.2 Operation-Wise Analysis. We further analyze the impact of MIRROR’s two-phase design on each operation
in DIVTON and VITOFF (Figure 18). The results show that introducing the preview phase eliminates the most
costly operation in DIVTON and VITOFF at runtime: deep preprocessing and dense flow generation, respectively.
The effective information recycling reduces the runtime latency of MIRROR by more than half.

8.5.3 Time-Series Analysis. An observation in Table 2 is that VITOFF reduces video conversion time more than
average latency. For example, MIRROR-runtime reduces conversion time and latency 35.2× and 25.7× compared
to using only DIVTON, and 2.5× and 2.2× compared to MIRROR (Preview + Runtime). This is because when
relying on DIVTON on a mobile device, its temperature gets higher in continuous processing. As the device gets
overheated, per-frame latency of DIVTON increases as well and gets much slower. In Table 2, average latency is
measured in heating-free condition by cooling the device but video conversion time is measured with the device
naturally heated.
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Fig. 19. Time-series operations when processing a 150-frame video. For each method, latency for the first frame is marked
with a dashed line for comparison. In the MIRROR variants, the frames with peak latency are processed with DIVTON and
the other are processed with VITOFF.

Table 4. Memory and storage usage for the baseline, MIRROR and its variants.

Method Memory Cost Storage Cost per Frame Conversion Time

Baseline (PF-AFN) 2.1 GB 345.96 kB 57.3 min
DIVTON Only 1.2 GB 345.96 kB 100.3 min
MIRROR (w/o storage) 0.8∼1.2 GB 345.96 kB 7.20 min
MIRROR (w/o VITOFF-preview) 0.8∼1.2 GB 353.78 kB 3.78 min
MIRROR 0.8∼1.2 GB 607.51 kB 2.85 min

To confirm the reason, Figure 19 shows per-frame latency on Samsung Galaxy S10 as time goes by. DIVTON-
only worsens per-frame latency as time proceeds since the device gets heated. While both MIRROR variants
significantly reduce per-frame latency of DIVTON by using VITOFF mostly instead of DIVTON, only MIRROR-
runtime has stable per-frame latency of DIVTON, completely free from the heating problem with zero execution
of the deep human parser at runtime, which causes additional gain on conversion time in Table 2.

8.5.4 System Overhead Analysis. Table 4 analyzes memory and storage usage of the baseline (PF-AFN), MIRROR
and its variants. While the baseline consumes 2.1 GB of memory during video conversion, DIVTON occupies
43% less memory (1.2 GB) owing to its lightweight warping module. Although the deep human parser added to
DIVTON increases memory consumption by 0.4 GB, the impact of lightweight warping module prevails, resulting
in significant reduction in memory usage. In addition, VITOFF further reduces the memory usage to 0.8 GB most
of the time since DIVTON is rarely executed.
In terms of storage cost, the full two-phase version of MIRROR stores the RoI locations, and human body

semantics and dense warping flow in the RoI that are extracted by the preview phase. It occupies 1.76× more
storage (607.51 kB/frame) than MIRROR (w/o storage) that stores only the input video (345.96 kB/frame). The
additional storage usage inMIRROR results in 2.5× faster conversion compared toMIRROR (w/o storage), meaning
that MIRROR’s computation reduction prevails additional read/write cost at storage. Importantly, since MIRROR
processes most of the frames (93.6%) via lightweight tracking in VITOFF, the additional storage cost mainly
comes from VITOFF-preview. To confirm the impact, we make another variation MIRROR (w/o VITOFF-preview)
that stores only RoI locations and human semantics given by DIVTON-preview, which nearly nullifies additional
storage cost without a significant increase in conversion time.

9 LIMITATIONS AND FUTURE WORK
While providing substantial gain in terms of video VTO quality and computation overhead, as the first approach

towards generalizable on-device VTO system, MIRROR has room to be improved further.
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Towards Real-time Video VTO. Although our target application (Section 2.2) does not require real-time VTO,
providing real-time video VTO can combine VTO with augmented reality, which has the potential to diversify
VTO applications. Currently, the major bottleneck is the lack of full GPU execution for a VTO GAN, as discussed
in Section 5.2. We believe that future endeavors in supporting GPU operations and the advances of mobile AI
chips [40] and model compression techniques [51] would solve this problem. Utilizing resourceful servers by
sharing only de-identified information can also be considered in the future [28].
Towards Diverse Views and High Resolution Images. The currentMIRROR implementation supports various
poses and backgrounds with users’ front-side views. While the front-side views are most important, users might
want to check the VTO results on their side and back. The latest VTO DNNs [20, 26] do not support these views
either due to lack of proper dataset, which can be resolved as VTO datasets are advanced. In addition, given
recent efforts for high-resolution VTO [14], combining these DNNs with VITOFF would be interesting future
work for on-device photo-realistic video VTO.
Towards Realistic Drape in VTO. From our survey in Section 2, we found that design, color, size, and texture
are key factors causing inconvenience in online clothes shopping. While MIRROR focuses on design and color,
it is still important to address proper sizing and realistic texture rendering to improve the user experience in
VTO services. Previous work focusing on proper size fitting utilizes an avatar, which requires a 3D database
of clothes [58] and an additional depth camera to approximate users’ body size. However, these settings are
not in typical online clothing shopping scenarios. Even after constructing the 3D database and measuring the
user’s body, 3D mesh-based cloth draping [3, 23] is computationally heavy on mobile environments. On the other
hand, VTO capable of capturing the texture of garments requires computer graphics-based texture rendering
techniques [33] for accurate results. However, employing such methods on mobile devices suffer from significant
computational overhead.

Although image-based VTO has relatively unexplored this regime, a few pieces of recent work have investigated
proper person/clothing sizing [13] and texture representation [38]. With the initial attempts, we envision that the
issues regarding size fitting and texture representation can be resolved gradually in the future by relavent datasets
and advanced deep learning strategies. However, the existing methods consider neither domain generalization
and computational burden, orthogonal to this work. Therefore, it would be valuable future work to combine the
incoming advanced DNNs with the insights gained from our study, including how to address domain shifts in
real-world datasets and reduce computational overhead.

10 CONCLUSION
The mobile online shopping market is growing rapidly. However, consumers still face the challenge of not being
able to try on clothes before purchase. Although VTOGAN has emerged as a solution, offering consumers the VTO
experience in their videos while securing privacy is challenging due to significant domain shifts and on-device
computation burden. Therefore, we have investigated generalizable on-device video VTO for mobile clothes
shopping. Based on a concrete scenario derived from a survey, we have proposedMIRROR that converts real-world
videos fast and accurately, which comprises two-phase operations of a generalizable VTOGAN called DIVTON and
a lightweight VTO tracking method VITOFF. With our tailored end-to-end design,MIRROR significantly improves
the quality of video VTO with 20.1× faster conversion and 16.9× less energy consumption compared to the latest
PF-AFN. While MIRROR achieves substantial performance improvement, a range of valuable yet unexplored
challenges remains, such as full real-time capabilities, diversified viewpoints, high-resolution rendering, accurate
size fitting, and realistic texture representation. As the first work on mobile-only domain-invariant video VTO,
we hope that MIRROR can serve as a stepping stone to foster future advancements regarding these issues.
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