
MetaSense: Few-Shot Adaptation to Untrained Conditions in
Deep Mobile Sensing

Taesik Gong, Yeonsu Kim, Jinwoo Shin, and Sung-Ju Lee

KAIST, Republic of Korea

{taesik.gong,yeonsu.kim,jinwoos,profsj}@kaist.ac.kr

ABSTRACT
Recent improvements in deep learning and hardware support offer

a new breakthrough in mobile sensing; we could enjoy context-

aware services and mobile healthcare on a mobile device powered

by artificial intelligence. However, most related studies perform

well only with a certain level of similarity between trained and

target data distribution, while in practice, a specific user’s behav-

iors and device make sensor inputs different. Consequently, the

performance of such applications might suffer in diverse user and

device conditions as training deep models in such countless con-

ditions is infeasible. To mitigate the issue, we propose MetaSense,
an adaptive deep mobile sensing system utilizing only a few (e.g.,

one or two) data instances from the target user. MetaSense em-

ploys meta learning that learns how to adapt to the target user’s

condition, by rehearsing multiple similar tasks generated from our

unique task generation strategies in offline training. The trained

model has the ability to rapidly adapt to the target user’s condi-

tion when a few data are available. Our evaluation with real-world

traces of motion and audio sensors shows that MetaSense not only

outperforms the state-of-the-art transfer learning by 18% and meta

learning based approaches by 15% in terms of accuracy, but also

requires significantly less adaptation time for the target user.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools.

KEYWORDS
Human activity recognition; Mobile sensing; Deep learning; Meta

learning; Few-shot learning

ACM Reference Format:
Taesik Gong, Yeonsu Kim, Jinwoo Shin, and Sung-Ju Lee. 2019. MetaSense:

Few-Shot Adaptation to Untrained Conditions in Deep Mobile Sensing. In

The 17th ACM Conference on Embedded Networked Sensor Systems (SenSys
’19), November 10–13, 2019, New York, NY, USA. ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3356250.3360020

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SenSys ’19, November 10–13, 2019, New York, NY, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6950-3/19/11. . . $15.00

https://doi.org/10.1145/3356250.3360020

1 INTRODUCTION
With it being more than a decade since the advent of smartphones,

smart devices (smartphones and wearables) have enriched our lives

via their ever-improving computing resources and sensing capabili-

ties. Empowered by deep learning and mobile AI processors, mobile

sensing has been developed for diverse applications, which were

impossible just a few years ago. Recent examples include human ac-

tivity recognition [26, 33, 34], acoustic context recognition [18, 19],

complex physical exercise recognition [44], device-free authenti-

cation [3, 54], sign language recognition [5], and even predicting

one’s emotional status [20, 22], to name a few. These mobile sensing

applications have the potential of mainstream adoption as users

could enjoy software-based services at any time without requiring

extra hardware.

While these studies have opened the possibility of novel sensing

applications with smart devices, they face performance challenges

when deployed in the wild. Performance degradation is mainly

caused by the existence of a vast number of individual conditions;
we define an individual condition as a combination of multiple

dependencies (e.g., the user’s behavior and device) that occur when

deployed to a user, which is usually different from the condition

where the sensing model was trained. Taking human activity recog-

nition (HAR) with smartphones as an example; users would have

their own patterns of activities (e.g., walking speed and stride)

which in turn generate dissimilar sensor values across users. More-

over, users hold smartphones in various ways, e.g., in a pocket or

on a hand that affects the orientation and position of the sensors. In

addition, individuals have different smartphones that have hetero-

geneous sensor readings due to the diversity of both software and

hardware specifications. Each of these dependencies, and the count-

less combination of these dependencies, is known to significantly

degrade the performance of mobile sensing systems when deployed

in practice [45, 47, 51]. These differences in individual conditions

hinder mobile sensing systems from operating well for unseen users
and thus overcoming this issue has become an important research

question.

A naïve solution to this problem is to build an individual model by

manually and sufficiently collecting the individual data. In modern

deep neural networks however, it requires a massive amount of

data, often over thousands, to train a large number of parameters

while avoiding overfitting to the training data [11, 17, 46]. That is,

it requires expensive cost and user effort in tedious data collection

and labeling process, which is impractical. An alternative solution

is to calibrate sensors or calculate condition-independent features

to minimize the dependencies [8–10, 36, 38, 40, 41, 47, 52]. For

instance, using the sum of the squared values of each x, y, and z-

axis accelerometer values helps mitigate the dependency for activity

recognition with smartphones [40, 41]. However, this line of work

https://doi.org/10.1145/3356250.3360020
https://doi.org/10.1145/3356250.3360020

SenSys ’19, November 10–13, 2019, New York, NY, USA Taesik Gong, Yeonsu Kim, Jinwoo Shin, and Sung-Ju Lee

Task 1

overview

Base-Model Training
(developer-side)

Adaptation
(user-side)

Source Dataset Task Generation

Parameter Update
via meta learning

Base model

Adapted models

Adaptation

Adaptation

Task 2

User 2

Few-shot

Few-shot

User 1

Class 1 Class 2 Class M

Class 2Class 1

Class 1

Class M

Class MClass 2

Task 3

Task 4

Class 2Class 1 Class M

…

…

…

…

…

Figure 1: MetaSense overview.

typically focuses only on a certain part of dependencies (e.g., sensor

orientation). More importantly, these approaches require expertise

that is tailored to a specific sensor types and applications. Therefore,

they could not apply the same method as the type of sensors (e.g.,

from motions to audio) and sensing applications (e.g., from activity

to emotion recognition) change. Motivated by these challenges,

we attempt to answer the following question: is there a general
solution that overcomes the individual condition in mobile sensing
with minimal user effort?

We presentMetaSense, a system that adapts deep sensing models

to a target user with a few shots from the target (one shot is one

labeled sample per class). Figure 1 is an overview of MetaSense.

MetaSense trains a base model by providing multiple ‘episodic’

tasks via our task generation strategies, where each task refers to

adapting to an individual condition. With each task, the base model

experiences various individual conditions and make its parameters

adaptive to a new/unseen condition. When the base model is de-

ployed to a user, it adapts to the target user’s condition with only

a few shots (e.g., one or two). Since MetaSense works with only a

few shots, it significantly diminishes the laborious data collection

process for each user while still achieving desirable performance.

MetaSense is applicable to any deep learning models (i.e., model-

agnostic) and does not limit its coverage to specific type of sensors

or applications (i.e., condition-agnostic). MetaSense also entails

significantly less adaptation time compared to the traditional deep

neural networks training, which is undoubtedly beneficial to the

resource-constrained mobile devices.

To enable such a few-shot adaptation system, we employ the

idea of few-shot learning, enabled by meta learning [7, 15, 37, 43].

Meta learning (also known as “learning to learn”) is an attempt to

imitate the human’s ability that adapts quickly and efficiently to

new concepts. As an analogy, one can easily learn how to ride an

ice skate if she already knows how to ride a roller skate. Bringing

this concept to machine learning, meta learning aims to build a

model that rapidly adapts to a new condition that has never been

encountered during the training. Our intuition of utilizing meta

learning is that deep mobile sensing systems could typically be

deployed to many unknown conditions, and this challenge could

be handled by learning how to adapt to unknown conditions.

To our best knowledge, MetaSense is the first to propose the use

of meta learning as a solution to the individual condition problem

in deep mobile sensing. Most existing meta learning approaches

are limited to demonstrating their performance with a large corpus

of image data (e.g., Omniglot [29]). In mobile sensing, however,

the scarce dataset and the aforementioned countless combinations

of dependencies make the situation different and hence requires

a unique and sophisticated solution in the way of applying meta

learning. Beyond just adopting a meta learning solution to mobile

sensing, we propose three task generation strategies to effectively

leverage available data and enhance the objective of meta learn-

ing. Due to this, the proposed scheme outperforms other few-shot

learning baselines (§4.3).

In particular, to evaluate MetaSense, we collected datasets of

two tasks: human activity recognition (via motion sensors) and

speech recognition (via microphones), under the combination of

multiple dependencies (e.g., user, device model and type, sensor

position and orientation dependencies). We compare MetaSense to

six different baseline methods including the state-of-the-art transfer

learning [32] and few-shot learning algorithms [7, 43]. Our results

indicate that MetaSense outperforms the baselines in both accu-

racy and training overhead. In our activity recognition dataset for

instance, MetaSense improves the accuracy of the non-adapted

model from 27.6% to 67.2% with only one shot. Compared to transfer

learning, MetaSense achieves accuracy improvement of 18% on av-

erage, with only one fourth of its adaptation time. In addition, our

task generation strategies tailored to the mobile condition problem

outperform the accuracy of existing few-shot learning approaches

by 15% on average. We also evaluate MetaSense with two public

datasets and the results demonstrate that the effectiveness and

efficiency of MetaSense can be generalized.

We summarize our key contributions as follows:

• We presentMetaSense, a few-shot adaptation system for deep

mobile sensing using meta learning. We believe MetaSense is

the first proposal to reveal that meta learning is a promising

solution to overcome the multi-dependency challenge in

deepmobile sensing. Our key intuition behind adoptingmeta

learning is by rehearsing condition changes while training,

MetaSense: Few-Shot Adaptation to Untrained Conditions in Deep Mobile Sensing SenSys ’19, November 10–13, 2019, New York, NY, USA

raw_activity

0.4

0.6

0.8

1

1.2

1.4

1.6

A
cc

e
le

ra
ti
o
n

P1, Attempt1 P1, Attempt2 P2, Attempt1 P2, Attempt2

Time

(a) Magnitude of acceleration from the activity “jumping”.

-0.3
-0.1
0.1
0.3

1
0
0
0
0
0 P1, Attempt1

-0.3
-0.1
0.1
0.3

1
0
0
0
0
0 P1, Attempt2

-0.3
-0.1
0.1
0.3

1
0
0
0
0
0 P2, Attempt1

-0.3
-0.1
0.1
0.3

1
0
0
0
0
0 P2, Attempt2

A
m

p
li
tu

d
e

Time

raw_speech

(b) Audio waves from the word “yes”.

Figure 2: Comparison of raw signals between and within users P1 and P2. Attempt 1 and 2 are specified for each user.

the model is trained in a way that it learns how to adapt to

new conditions.

• We propose three task generation strategies to effectively

leverage a limited number of mobile sensing data for boost-

ing the performance of meta learning in mobile sensing,

which leads to the superior performance over other few-shot

learning baselines.

• Our experimental result with six baselines demonstrates that

MetaSense outperforms the state-of-the-art transfer learning

by 18% on average and few-shot learning methods by 15% on

average with respect to accuracy. Additionally, MetaSense

requires significantly less adaptation time compared to tra-

ditional deep learning approaches. Our evaluation with four

different datasets, three differentmodels, and a different num-

ber of available data validates the MetaSense’s performance

under various circumstances.

2 BACKGROUND AND MOTIVATION
We motivate why models should adapt to individual conditions in

mobile sensing. We investigate what are the factors that degrade in-

the-wild performance of mobile sensing applications and quantify

the problem through two case studies; human activity recognition

and speech recognition.

2.1 Why Conditions Matter
While recent studies have shown the potential of a variety of

mobile sensing applications powered by deep learning [3, 5, 18–

20, 22, 26, 33, 34, 44, 54], they must overcome the challenge of

diverse individual conditions for wider adoption. Mobile sensing

applications get input from the sensors in smart devices for their

services, e.g., Inertial Measurement Unit (IMU) for motions and

microphone for audio. The sensed values, however, are highly de-

pendent on various conditions which in turn deteriorate the per-

formance when faced with an untrained condition. We summarize

the following two major categories where the individual conditions

come from.

User dependency: Humans have different physical conditions and

behaviors that make them unique between each other. In human

activity recognition (HAR) for instance, users have dissimilar pat-

terns of “walking” in term of the speed and stride, which could

be confused with someone’s “running”. In addition, some people

prefer to put their phone in their pocket, while others hold in hand,

and each smartphone position makes different sensor readings even

with the same device. Since users’ behaviors are unbounded and

cannot be easily characterized in advance, user dependency is one

of the major obstacles for mobile sensing to overcome.

Device dependency: Users have their own devices that have a dif-

ferent shape, weight, sensor specification, and so on, which make

the model get different sensor values. Especially for IMU sensors,

different devices have different sensor biases, errors, and sampling

rates [45]. In addition, software heterogeneity (e.g., different ver-

sions of OS) makes sensor readings different [21]. With the recent

spread of wearable devices, some users might run the sensing ap-

plication in their wearable devices instead of smartphones. As the

number of unique Android devices has already exceeded over 24,000

in 2015 [23], it seems infeasible to collect data from all possible

devices in advance to train and make the model work effectively

for every device.

Previous studies have shown that the user and device depen-

dencies degrade the performance of mobile sensing [45, 51]. While

there have been attempts to resolve the dependencies, most focus

on isolated dependencies, e.g., user dependency [16, 35, 39, 40, 42],

device position/orientation [10, 49, 52], and hardware/software het-

erogeneity [21, 36]. However, mobile sensing when deployed in

practice, typically faces all of the dependencies. Considering the

countless possible combinations of users and devices in the real

world, building a well-performing model for all different conditions

seems to an impractical, if not impossible, proposal.

2.2 Case Study: Activity & Speech Recognition

To understand how the individual condition affects deep mobile

sensing performance, we collected two datasets, i.e., activity and

speech recognition with ten different users (P1–P10) and devices

(seven smartphones and three smartwatches). Activity recognition

has nine activities and speech recognition has 14 keywords. Note

that there are no duplicate devices or users, and data collection

is performed without specific restrictions to allow and encourage

different behaviors of users. The resulting dataset contains ten

individual conditions from ten users. The details of the dataset and

preprocessing are described in §4.1.1.

Figure 2 compares the raw signal within and between users P1

and P2. Figure 2a illustrates the square root of the squared sum of

x, y, and z-axis accelerations for the “jumping” activity of users P1

and P2. We specify two different instances of the jumping activity

as Attempt1 and Attempt2 in order to compare within-condition

variability to cross-conditions variability. Similarly, Figure 2b shows

the raw audio waves from the keyword “yes”. The top two graphs

show two different instances of P1 while the bottom two graphs

show those of P2. As shown in both figures, while two different

attempts from the same user appear similar, different conditions

make significantly different sensor readings even for the same class

(i.e., “jumping” and “yes”).

SenSys ’19, November 10–13, 2019, New York, NY, USA Taesik Gong, Yeonsu Kim, Jinwoo Shin, and Sung-Ju Lee

motive_activity

0

10

20

30

40

50

60

70

80

90

100

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

A
cc

u
ra

cy
 (

%
)

Leave-one-user-out Per-user

(a) Activity recognition with motion sensors.

motive_speech

0

10

20

30

40

50

60

70

80

90

100

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

A
cc

u
ra

cy
 (

%
)

Leave-one-user-out Per-user

(b) Speech recognition with audio inputs.

Figure 3: Per-user accuracy of activity recognition and speech recognition. Leave-one-user-out and per-user models are com-
pared.

To further investigate how the different sensor readings affect

the performance for deep sensing models, we trained convolutional

neural networks (CNN) based models for each dataset (details in

§4.1.3). We trained the model in two ways: a leave-one-user-out

model and a per-user model. The leave-one-user-out model repre-

sents a common development scenario where a developer collects

data from multiple conditions and train the model with the dataset,

and test the model with a real user. Meanwhile, the per-user model

is trained only on the data collected from the target user’s condition.

For P1 for instance, the leave-one-user-out model is trained on P2–

P10’s data while the per-user model is trained on P1’s training data,

and both are evaluated on the test data of P1. When training the

model, we use L2-regularization and batch normalization to avoid

possible overfitting and report the accuracy with the test dataset.

Figure 3 shows the accuracy for activity recognition and speech

recognition of our models trained with leave-one-user-out and per-

user manner, respectively. For our activity recognition dataset (Fig-

ure 3a), even though leave-one-condition-out models utilized about

nine times more training data, they show significantly worse per-

formance than the per-user models. This suggests the combination

of multiple dependencies makes the model difficult to generalize its

performance to unseen conditions. Figure 3b shows that a similar

trend exists for our speech recognition data. The performance gap

between the leave-one-user-out and per-user models decreases in

the speech recognition dataset, possibly because the task of saying

a word at different conditions is more similar than performing an

activity. Still, both results show adapting the sensing models to

unseen conditions is important.

3 METASENSE
We present MetaSense by starting with an overview and the meta

learning scheme MetaSense uses (§3.1). We then detail our task

generation algorithms to catalyze the effect of meta learning (§3.2),

followed by the parameter update algorithm that makes the model

adaptive to untrained conditions (§3.3). With the generated model,

we explain how MetaSense can adapt rapidly to a new/unseen user

with a few labeled data (§3.4).

3.1 Overview: Meta Learned Adaptation
We consider a practical scenario where a model developer has a

source dataset collected under several individual conditions, e.g.,
activity recognition data from multiple users measured with their

own devices. Under the scenario, the goal of MetaSense is to adapt

to a new/unseen user’s condition when only a few target user’s

data samples are available. We denote a labeled data instance for

each class as a shot. Note that we assume a few shots (e.g., one or

two) are given from the target user and the original source dataset

does not contain any data samples from the target user. Namely, a

model developer first trains a base model with the source dataset,

and the model further adapts to the target user’s conditions using

very small gradient steps of a few labeled data samples.

To handle adaptation with only a few shots, we design a meta

learning framework, also known as learning to learn, to train the

model. Meta learning [7, 15, 37, 43] generally aims to learn a new

task or environment rapidly, by learning how to learn. Our intuition

behind using meta learning is that deep mobile sensing systems

could be deployed to countless unknown individual conditions,

which could be resolved by learning how to adapt to unknown con-

ditions. Hence, the meta-objective of MetaSense is learning effective

parameters that has an ability to adapt to an unseen condition.

Figure 1 shows an overview of MetaSense. MetaSense trains the

deep sensing model through two steps, i.e., base-model training
and adaptation. Specifically, MetaSense makes the base model learn

how to adapt to a new condition with only a few shots and gradient

steps. The base model is trained on a set of tasks, where each task

is generated from the source dataset. Individual task mimics a situ-

ation where the model performs under a new untrained condition.

After training, the base model has the knowledge of how to adapt

to a new condition with a few shots. In the adaptation step, a target

user provides a few shots to the model and the model adapts its

parameters with a small number of gradient steps (e.g., 10). After

the adaptation process, the model is ready for the target user’s

conditions.

Algorithm 1 MetaSense Base-Model Training

Input: Source dataset D = {(x1,y1), ..., (xN ,yN)}, learning rate

hyperparameters α ,β
Output: Trained parameters θ
1: θ ← random initialization

2: while not finished do
3: T ← GenerateTask(D) ▷ Details in §3.2

4: for Ti ∈ T do
5: STi ← K support samples from Ti
6: QTi ← K query samples from Ti where STi ∩QTi = ∅
7: Evaluate ∇θLTi (fθ) with STi via Equation (2)

8: θ ′
Ti

= θ − α∇θLTi (fθ) ▷ Get Ti -specific parameters

9: Evaluate LTi (fθ ′Ti
) with QTi

10: θ ← θ − β∇θ
∑
Ti

LTi (fθ ′Ti
) ▷ Update θ

MetaSense: Few-Shot Adaptation to Untrained Conditions in Deep Mobile Sensing SenSys ’19, November 10–13, 2019, New York, NY, USA

Algorithm 1 outlines our base-model training method, where we

provide further details in §3.2 and §3.3. We refer to D = {(x1,y1),
..., (xN ,yN)} as the source dataset, x i is an input vector, and yi is
a one-hot label vector where yi ∈ Y , Y is the set of all labels, and

��Y �� = M . The source dataset has been collected from multiple con-

ditions. Base-model training algorithm outputs trained parameters

θ for a deep sensing model fθ (x). With D, MetaSense generates a

set of tasks T that are designed to boost the effect of meta-learning

objective, e.g., learning to adapt to the target condition (line 3).

We explain the details of task generation in §3.2. From each gen-

erated Ti ∈ T , MetaSense samples a support set and a query set
without overlap between them (line 5–6). For each task, MetaSense

computes temporal parameters θ ′
Ti
via gradient descent with the

support set and evaluates the loss function LTi with the temporal

parameters and the query set (line 7–9). The final parameters are

updated by a meta objective, which minimizes the sum of each

task-specific loss (line 10). We detail this parameter update process

in §3.3. Through this meta learning process, the trained parameters

learn an effective way to adapt to the unseen task, i.e., the target

condition.

3.2 Task Generation

Unlike existing meta learning methods where tasks are randomly

generated by sampling from a large available dataset, how to ef-

ficiently and effectively leverage the limited source dataset is the

unique challenge in applying meta learning to data-hungry mobile

sensing. We view each task as each individual condition in mobile

sensing. Thus, the goal of our task generation is to generate di-

verse and realistic individual conditions given the source dataset so

that MetaSense can teach the base model how to adapt to possible

condition changes via various tasks.

MetaSense generates a set of tasks T from D. Each task Ti ∈ T

has a set of data samples, {(x1,y1), ..., (xNTi ,yNTi
)}. We assume

the model developer has a source dataset D from C individual

conditions (e.g., user and device pairs). We let a subset of dataset

Dc ⊂ D, an individual condition dataset (ICD) that represents a
dataset from a specific condition such that

C⋃
c=1
Dc = D and Dc ∩ Dd = ∅, (1)

where ∪ is the set of all elements in the collection, c ̸= d , and 1 ≤
c,d ≤ C . We devise three strategies of generating tasks to maximize

the effect of meta learning for few-shot adaptation to individual

conditions as follows.

Per-condition tasks: To mimic a situation where the base model

meets an unseen target condition when deployed to the target

user, we generate each per-condition task from a sampled data by

each ICD. Specifically, we generate Ti where Ti ⊂ Dc=i for all

1 ≤ i ≤ C as illustrated in Figure 4. With these tasks, the base

model experiences adapting to real individual conditions. As the
number of per-condition tasks is equal to the number of collected

conditions C , the number of conditions the model developer has

affects the performance of base model training. We found that

the more conditions the base model is trained on, the better the

performance. This is because the basemodel has more opportunities

task

Source Dataset

𝒯1

Per-condition tasks Multi-conditioned tasks

𝒯2

𝒯3

𝒯4

𝒯5

Five
ICDs

𝒟1

𝒟2

𝒟3

𝒟4

𝒟5

𝒯6

𝒯7

𝒯8

𝒯9

𝒯10

𝑦1 𝑦2 … 𝑦𝑀 𝑦1 𝑦2 … 𝑦𝑀

…

…

…

…

…

…

…

…

…

…

Figure 4: An illustration of per-condition tasks and multi-
conditioned tasks generated from five individual condi-
tioned datasets (ICDs).

in advance to experience diverse conditions before being deployed

to the target user. We evaluate the impact of the number of available

conditions in §4.5.

Multi-conditioned tasks: We generate multi-conditioned tasks in

addition to per-condition tasks. A multi-conditioned task is made of

samples from randomly selected ICDs. Our intuition for generating

multi-conditioned tasks is to intentionally provide the base model

with artificial conditions so that it can be (i) trained on more di-

verse tasks beyond per-conditions tasks while (ii) avoiding possible

overfitting to the per-conditions tasks. We generate C number of

multi-conditioned tasks for each iteration of training in order to

take advantage of the randomness for generalization. Specifically,

for each class label y j ∈ Y , we randomly choose an ICD Dc and

sample data from the dataset for the label as illustrated in Figure 4.

That means for all (x i ,yi) in a multi-conditioned task if yi = y j
then (x i ,yi) ∈ Dc . Each multi-conditioned task is thus generated

from at most
��Y �� = M ICDs. This way, we can generate more re-

alistic tasks compared to entirely random sampling from D, as it

keeps input distribution within each class.

Homogeneous task generation: We generate the above tasks

with keeping labels consistent across tasks. This is contrary to

existing meta learning approaches [7, 15, 37, 43] where the labels for

each task are mixed randomly, i.e., YTi ̸= YTj where Ti ̸= Tj . Since

the objective of most meta learning studies in machine learning is

focused on adapting to arbitrary tasks that might not have the same

labels, this label mixing strategy would be natural for them. On the

other hand, in our problem, the source and the target datasets have

different distribution but have the same label space, i.e., YTi = YTj
where Ti ̸= Tj . We found keeping labels consistent is effective as it

leverages the common knowledge on the same label set Y across

tasks.

Since the source dataset is collected from multiple conditions, it

is common to have imbalanced numbers of data instances among

Dc . When generating per-condition and multi-conditioned tasks,

we sample a batch of data uniformly across conditions (i.e., giving

the same weight to all conditions and accordingly the generated

tasks) in order to avoid being biased to some conditions that have

a higher number of samples than others.

The generated task set T via the above three strategies has 2C
tasks. The base model iterates each task to update the parameters

as explained next. We evaluate the effectiveness of our unique task

generation strategies in §4.3.

SenSys ’19, November 10–13, 2019, New York, NY, USA Taesik Gong, Yeonsu Kim, Jinwoo Shin, and Sung-Ju Lee

3.3 Parameter Updates

With the generated tasks in §3.2, we train the parameters of

the base model via meta learning. Specifically, MetaSense employs

model-agnostic meta learning (MAML) [7] for updating the param-

eters. MAML is applicable to any deep neural networks that use

gradient descent (model-agnostic) and requires only a few gradient

steps to update the model. The assumption of MAML is that there

exist initial parameters that are transferable to a new task with only

a few shots. MAML trains the initial parameters in a way that the

trained parameters are adaptive to change of tasks. Our intuition

behind adopting MAML is that for deep sensing models there exist

effective initial parameters that are transferable between individual

conditions, so that the parameters can be adapted to the target

condition within a few gradient steps.

From each task Ti , MetaSense samples a support set STi and a

query set QTi that have K shots, respectively. K should be a small

number (e.g., 5) to simulate a few shots from a target user. Support

sets are used for training the task-specific parameters θ ′
Ti
, which

simulates adapting parameters to a target condition. Query sets

are used for evaluating the task-specific parameters and eventually

updating the parameters θ of our interest (i.e., the base model). We

ensure support sets and query sets have no overlapping data. We

target a multi-class classification problem and use cross-entropy

loss to evaluate the per-task loss, i.e.,

LTi (fθ) =
∑

(x j ,y j)∈STi

y j log fθ (x j) + (1 −y j) log fθ (1 − x j). (2)

We then get Ti -specific parameters θ ′
Ti

with a few gradient descent

steps (e.g., 5 steps):

θ ′
Ti

= θ − α∇θLTi (fθ), (3)

where the task learning rate α is a hyperparameter: it is usually

set as a higher number (e.g., 0.1) than traditional learning rate to

enforce fast adaptation [7].

With the task-specific parameters, we define a meta-objective

function as follows:

argmin

θ

∑
Ti

LTi (fθ ′Ti
) where θ ′

Ti
= θ − α∇θLTi (fθ). (4)

The meta-objective is finding parameters θ that minimize the sum

of task losses. Note that each task loss LTi is evaluated by the task-

specific parameters θ ′
Ti
that are calculated by a few gradient descent

steps with a query set that has a few shots (Eq. (3)). This enforces θ
to be sensitive to task changes so that it becomes effective within

a few gradient steps. Note that the tasks generated by MetaSense

reflect individual conditions. The meta-objective is thus interpreted

as minimizing the sum of task-specific losses, so that the optimal

parameters of θ become an effective initialization of the model such

that with the parameters the model can rapidly adapt to a new

condition after several gradient steps with a few shots.

The last step is updating the parameters θ by minimizing the

meta objective with stochastic gradient descent (SGD):

θ ← θ − β∇θ

∑
Ti

LTi (fθ ′Ti
), (5)

where the meta learning rate β is a hyperparameter. Note that the

trained base model fθ has initial parameters θ0 = θ that are expe-

rienced through meta learning with multiple tasks that simulate

encountering unseen conditions in the real world. The base model

is now prepared for adaptation with a few shots from a target user.

3.4 Adaptation

After the base-model training is performed by the developer, the

base model could be deployed to any real users. The base model is

adapted for the target user with a few shots (e.g., 1 or 2 samples per

class) once at the beginning of the sensing application. We denote

U = {(x1,y1), ..., (xL ,yL)} as the target user’s dataset that has
L
M

shots. Since there are almost infinite individual conditions in the

wild, we assume a practical scenario where the target user’s dataset

has no identical conditions to the source dataset that the base model

is trained on, i.e., D ∩U = ∅.

Let the base model be fθ0 , where θ0 is the initial parameters that

are trained through meta learning. After i gradient descent steps
with the few shots, the parameters become:

θi = θi−1 − α∇θLU (fθi−1). (6)

Note that since the base model experienced a set of tasks through

Eq. (2)–(5), the trained parameters can effectively adapt to the target

condition with the meta-learned knowledge. While requiring only a

few shots from the target user, another advantage of this parameter

update algorithm is that it takes only a few gradients steps, which

significantly reduces the training time on the resource-constraint

mobile devices. We evaluate the time taken to adapt the model

compared to other deep neural networks baselines in §4.4.

4 EXPERIMENTS
We evaluate MetaSense in various aspects to analyze its perfor-

mance. Specifically, we try to answer the following questions through

our evaluation: (i) How well does MetaSense perform against exist-

ing approaches? (ii) How effective are MetaSense’s task generation

strategies? (iii) How rapidly can MetaSense adapt to the target?

(iv) What is the impact of the amount of source data and model

architectures for MetaSense? (v) How well does MetaSense perform

on different datasets?

4.1 Settings
4.1.1 Dataset. We detail the data collection and preprocessing of

our datasets. The goal of our data collection is to evaluateMetaSense

with real-world datasets collected under individual conditions. Specif-

ically, we collected two most widely used types of sensors, IMU

and audio. We recruited ten users (aged 21-29; mean 24.6, and three

females) and conducted IRB-approved data collection experiments.

Each user performed activity recognition (for IMU) and speech

recognition (of audio) tasks. We randomly distributed ten different

Android devices (seven smartphones and three smartwatches) for

each user as listed in Table 1. In the table we specify the device

name, the type (smartphone or smartwatch), the maximum IMU

MetaSense: Few-Shot Adaptation to Untrained Conditions in Deep Mobile Sensing SenSys ’19, November 10–13, 2019, New York, NY, USA

Table 1: Settings for our data collection.

User Device Type IMU rate OS
P1 Samsung Galaxy J7 Phone 100Hz 7.0.0

P2 Google Nexus5 Phone 200Hz 6.0.1

P3 Essential Phone Phone 400Hz 7.1.1

P4 Google Pixel2 Phone 400Hz 8.1.0

P5 HUAWEI P20 Phone 500Hz 8.1.0

P6 Samsung Galaxy S9 Phone 500Hz 8.0.0

P7 LG G5 Phone 200Hz 6.0.1

P8 LG Urbane Watch 200Hz Wear 2.23.0

P9 LG G Style Watch 100Hz Wear 2.6

P10 ASUS Zenwatch3 Watch 100Hz Wear 2.23.0

sampling rate, and the Android OS version. We believe this dataset

is the first dataset collected under individual conditions from two

common sensors (IMU and audio).

Our activity recognition task is composed of nine activities that

are commonly used in the literature [2, 45]. Specifically, they are

“walking”, “running”, “stair down”, “stair up”, “lying”, “standing”,

“stretching”, “sitting”, and “jumping”. Participants performed each

task for around 2–5 minutes with the duration varying based on

the intensity of the activity. Note that we let the participants hold

their device freely (e.g., in the pocket, on hand, or on wrist) for

each activity to assure conditions are individual and natural. We

did not give explicit guidelines to the activities, so that participants

performed the activities according to their personal interpretation.

This naturally yields different styles of activities among users. We

recorded each x, y, and z-axis of accelerometer and gyroscope values

at the maximum sampling rate. We divide the data with 256-length

window and use it to train the model. However, since devices have

different sampling rates, this fixed-sized window maps different

durations (0.5–2.5 seconds) for different devices. We also evaluate

a down-sampled version (100 Hz) in §4.2.

The second task is speech recognition.We chose 14 words consid-

ering IoT applications [50]: “yes”, “no”, “up”, “down”, “left”, “right”,

“on”, “off”, “stop”, “go”, “forward”, “backward”, “follow”, and “learn”

were used. Each participant holds the device in their preferred fash-

ion and uttered each word 30 times in an office room. We did not

control their behaviors so that they had different individual condi-

tions, such as speech loudness, speed, and the distance between the

device and the user, etc. We recorded each utterance of a word for

2 seconds with 16 kHz sampling rate so as to exclude unnecessary

spectrum range for human voices.

4.1.2 Baselines. We compare MetaSense to six baselines, which

are widely used approaches for handling various untrained condi-

tions: traditional DNNs, the state-of-the-art transfer learning and

few-shot learning approaches. We not only aim to compare the

performance of MetaSense to these baselines, but also inspect how

these baselines perform under condition changes. Specifically, we

have the following baselines.

Src: For Src (source only), we use only the source dataset for training
the deep neural network and there is no adaptation to the target

user. Src is the same as the leave-one-user-out model in §2.2. Src

is a widely used method in resolving the diversity of inputs, i.e.,

training on as many data as possible that are collected from diverse

conditions. The performance of Src shows how well the condition

problem in mobile sensing could be resolved by using the source

dataset collected from other conditions. All the other baselines we

consider utilize the target users’ data to adapt the model.

Tgt: Tgt (target only) trains the model with only the few shots from

the target user. Tgt is the same as the per-user model in §2.2.

Src+Tgt: Src+Tgt (source plus target) uses both the source dataset

and the target users’ few shots for training the deep neural network.

Compared to Src, this baseline leverages the target user’s data for

adaptation while utilizing a relatively large amount of source data

to learn general representations.

TrC: Transfer Convolutional (TrC) [32] is the state-of-the-art trans-
fer learning in adapting to a target user’s activity recognition with

motion sensors with a few data samples. Specifically, TrC first trains

the model with the source dataset. When TrC adapts the model,

it freezes the CNN layers’ parameter and fine-tunes only the fol-

lowing fully connected layers with a few shots. The assumption

underlying this approach is that upper layers’ representations are

more transferable between similar problems [24, 32, 48]. Our meta

learning scheme is more powerful in the sense that it learns how

to transfer among similar tasks without this assumption.

PN: Prototypical Network (PN) [43] is one of the state-of-the-art

few-shot learning algorithms based on meta learning. Given a few

training data, PN generates prototypes in embedding space and

each prototype is the representative of each class. In inference, PN

uses the Euclidean distance metric to classify the closest prototype

(i.e., class).

MAML: Another popular few-shot learning baseline is MAML [7],

which is adopted in our parameter update stage §3.3. The perfor-

mance difference between PN and MAML would indicate which

method is more effective in deep mobile sensing, while the compar-

ison between the original MAML and MetaSense would highlight

the impact of our task generation strategies.

4.1.3 Implementation. To ensure a fair evaluation, we use the

same model architecture and hyperparameters, e.g., learning rates,

for all DNN-based baselines and MetaSense. We design them with

convolutional neural networks (CNN) followed by fully-connected

layers. CNN is a widely used architecture not only in vision but also

in activity and speech recognition with mobile sensors [12, 13, 32].

Specifically, the model architecture is composed of five convolu-

tional layers, followed by three fully-connected layers. We use

Rectified Linear Unit (ReLU) for activation function. We investigate

the impact of different model sizes in §4.6. We use two regulariza-

tion techniques, i.e., L2-regularization and batch normalization to

prevent overfitting. We train the model with Adam optimizer [14].

We use five gradient descent steps for training the base model

(Eq. (2)) with K = 5 and ten steps for adaptation (Eq. (6)). We imple-

ment MetaSense using the PyTorch framework [25] and train the

model in a server equipped with eight NVIDIA TITAN Xp GPUs

and 256 GB memory with Intel Xeon E5-2697 2.30 GHz processors.

4.2 Accuracy

We train the base model in a leave-one-user-out manner. Specif-

ically, we use the others’ data as the source dataset for each target

user. Namely, there are ten evaluations in total, and for each user

SenSys ’19, November 10–13, 2019, New York, NY, USA Taesik Gong, Yeonsu Kim, Jinwoo Shin, and Sung-Ju Lee

activity_normal

0
10
20
30
40
50
60
70
80
90

100

1-shot 2-shot 5-shot 10-shot

A
cc

u
ra

cy
 (

%
)

Src Tgt Src+Tgt TrC PN MAML MetaSense

(a) Activity recognition.

speech_normal

0
10
20
30
40
50
60
70
80
90

100

1-shot 2-shot 5-shot 10-shot

A
cc

u
ra

cy
 (

%
)

Src Tgt Src+Tgt TrC PN MAML MetaSense

(b) Speech recognition.

Figure 5: Average accuracy with 1, 2, 5, and 10-shots.

we have a source dataset with nine ICDs of the other users. We

report the average accuracy for the untrained/target user among

the ten scenarios. We focus on 1, 2, 5, and 10-shot cases that are

frequently used in few-shot learning evaluations [7, 37, 43]. We use

early stopping on the validation set and evaluate the accuracy on

the test set.

4.2.1 Superiority of MetaSense over Baselines. Figure 5 reports the
accuracy of the baselines and MetaSense for activity recognition

(Figure 5a) and speech recognition (Figure 5b). The error bar is

standard deviation (stdev for short) across users and thus high

stdev indicates the method has high variance among users, i.e., low

stdev suggests the method shows stable performance across users.

In general, as the number of shots increases, the accuracy also

increases except for Src as Src does not use the target data. In most

cases, Tgt performs better than Src, which means the learned repre-

sentations from multiple other conditions would not generalize to a

new condition. This again highlights the importance of adaptation

for deep mobile sensing. Tgt, however, does not achieve higher

performance than MetaSense, in particular when the number of

data is small due to overfitting. In all cases, MetaSense outperforms

the baselines, which shows the effectiveness of our approach when

dealing with new unseen/target conditions. In activity recognition,

MetaSense improves the accuracy of Src from 27.6% to 67.2% with

only one shot, where the improvement is 15% higher compared to

TrC. Furthermore, MetaSense outperforms the few-shot learning

baselines thanks to our task generation strategies, which we dissect

in §4.3.

4.2.2 Activity Recognition vs. Speech Recognition. Interestingly,
the baselines show different accuracy trends between two datasets;

while Src and Src+Tgt show the worst accuracy in activity recog-

nition, they yield relatively high accuracy in speech recognition

(especially in 1-shot and 2-shot cases). This is due to the degree

of variability of individual conditions among users according to

the target problem. Activity recognition involves more diverse in-

dividual conditions than speech recognition, as the activities could

be performed significantly differently among users. Therefore, in

speech recognition, Src and Src+Tgt perform better in 1-shot and

2-shot cases as the learned representations are more transferable

to target users than in activity recognition. Still, the situation is

reversed as the number of shots increased (5-shot and 10-shot),

showing that when available target data is larger than a certain

threshold, it is better to directly train with the data from the target

condition for the baselines, due to the dissimilarity between the

source and target conditions. In both datasets, MetaSense demon-

strates its improvement over the baselines without being heavily

activity_down

0
10
20
30
40
50
60
70
80
90

100

1-shot 2-shot 5-shot 10-shot

A
cc

u
ra

cy
 (

%
)

Src Tgt Src+Tgt TrC PN MAML MetaSense

Figure 6: Accuracy of the down-sampled activity recognition
dataset.

activity_dcl

0
10
20
30
40
50
60
70
80
90

100

1-shot 2-shot 5-shot 10-shot

A
cc

u
ra

cy
 (

%
)

Src Tgt Src+Tgt TrC PN MAML MetaSense

Figure 7: Accuracy of the activity recognition dataset with
ECDF features and CNNs+LSTM models.

biased to a certain dataset and without the issue of the number of

shots as in the speech recognition dataset.

4.2.3 Down-sampled Activity Recognition. For our activity recog-

nition dataset, we use a fixed-sized window length of 256 as men-

tioned in §4.1.1. Since different devices have different sampling

rates, a fixed-sized window requires different duration of samples

per device and this would worsen the condition problem. A possi-

ble solution would be down-sampling, at the expense of discarding

samples that would be informative. To investigate to what extent

down-sampling resolves the sampling rate dependency, we down-

sampled our dataset to the lowest sampling rate that our devices

have (100 Hz).

Figure 6 shows the accuracy of our down-sampled version of

activity recognition dataset. The average accuracy across all meth-

ods is increased by around 5% compared to the non-downsampled

dataset (Figure 5a). Although the accuracy of Src is increased by

about 5% compared to the non-downsampled, it is still low (around

33%), which means down-sampling does not completely solve the

condition problem. Furthermore, down-sampling (and up-sampling

as well) would require more complex considerations such as what

should be the target sampling rate, given thousands of devices ex-

ist. MetaSense on the other hand, could even adapt to different

sampling rates, demonstrating its adaptivity to unseen conditions

without losing the samples.

4.2.4 Features and Models for Activity Recognition. We further

investigate whether MetaSense works with recent features and

MetaSense: Few-Shot Adaptation to Untrained Conditions in Deep Mobile Sensing SenSys ’19, November 10–13, 2019, New York, NY, USA

task_activity

0

10

20

30

40

50

60

70

80

90

100

1-shot 2-shot 5-shot 10-shot

A
cc

u
ra

cy
 (

%
)

Random Per Per+Multi Per+Multi+Homo (MetaSense)

(a) Activity recognition.

task_speech

0

10

20

30

40

50

60

70

80

90

100

1-shot 2-shot 5-shot 10-shot

A
cc

u
ra

cy
 (

%
)

Random Per Per+Multi Per+Multi+Homo (MetaSense)

(b) Speech recognition.

Figure 8: Accuracy with and without our task generation strategies.

conv_activity

0

10

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
 (

%
) Tgt Src+Tgt TrC MetaSense

0 10 100 200

Epoch

(a) Activity recognition.

conv_speech

0

10

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
 (

%
) Tgt Src+Tgt TrC MetaSense

0 10 100 200

Epoch

(b) Speech recognition.

Figure 9: Target accuracy changes over epochs.

models designed for activity recognition on mobile devices. We

adopted the empirical cumulative density function (ECDF) [27],

which is the state-of-the-art feature extraction for HAR [28, 30]. For

the model, we utilized a combination of CNNs and LSTM networks

that takes advantage of the effective feature learning of CNNs and

the sequential modeling of LSTM [24, 31].

Figure 7 shows the accuracy of CNNs+LSTM models with ECDF

features for our activity recognition dataset. The features and mod-

els specialized to HAR improve the overall accuracy. Nevertheless,

MetaSense shows its effectiveness compared to the other baselines,

especially when available data are few (i.e., 1-shot case). This show-

cases the model-agnostic characteristic of MetaSense; MetaSense

applies to the features and models tailored to a specific sensing

application.

4.3 Effect of Task Generation
We now examine the effectiveness of our task generation methods

described in §3.2. We evaluate the accuracy of MetaSense while

gradually adding each of our task generation method. As a baseline,

we use random task generation from the source dataset, which

is widely used in recent meta learning approaches [7, 15, 37, 43].

We implement the random task generation as described in §3.2.

More specifically, tasks are generated from the instances sampled

randomly from the source data regardless of conditions. We then

use the same number of random tasks as the per-conditioned tasks.

We use the activity and speech recognition datasets and report the

accuracy for 1, 2, 5, and 10-shot cases.

Figure 8 reports the accuracy gain of our task generation meth-

ods. Random refers to the random task generation. The accuracy

improvement escalates as each of our task generation strategies

is added. The result shows that our per-condition (Per) and multi-

conditioned (Multi) tasks are effective than random sampling. This

means those tasks can teach more plausible conditions to the base

model than the randomly generated tasks. Furthermore, generat-

ing homogeneous tasks (Homo) helps to accumulate the common

knowledge learned from the tasks that has the same label setY that

would improve the performance when faced with a target task that

also has Y . In summary, the results demonstrate the importance of

task generation algorithms to teach the base model, and our task

generation methods effectively utilize the given source dataset (18%

gap on average, 33% in the extreme case compared to Random) so

that they catalyze the efficacy of meta learning for resolving the

condition problem.

4.4 Adaptation Overhead
It is important to note that all the baselines and MetaSense requires

different adaptation overhead. In this section, we demonstrate that

MetaSense is also computationally efficient in the overhead of adap-

tation, i.e., the training time required to adapt to the target, which

is crucial to ensure high quality mobile user experience. We inves-

tigate how many training epochs are required for each method to

converge to its best performance (with respect to validation). In the

experiments, we compare only Tgt, Src+Tgt, TrC, and MetaSense

because Src and PN do not require the adaptation step while MAML

has the same adaptation overhead as MetaSense. We report the

accuracy averaged among 10 users in the 5-shot cases, where the

overall trends for other shot cases are similar.

Figure 9 plots the accuracy changes for the target as training

for adaptation proceeds. Note that while Tgt, TrC and MetaSense

require only the target user’s data for adaptation, Src+Tgt trains

with the entire data composed of the source and the target datasets.

Therefore, each epoch of Src+Tgt requires about ten times more

time than others with out datasets. For Tgt, TrC, and MetaSense, the

required time for one epoch is the same. Both activity recognition

(Figure 9a) and speech recognition (Figure 9b) show that MetaSense

entails significantly less adaptation overhead compared to other

approaches while achieving the highest accuracy. TrC requires

fewer epochs to converge compared to Tgt as TrC already learned

the representations through the source dataset and fine-tunes its

parameters to the target via transfer learning. MetaSense maximally

leverages the source data via meta learning so that it has the fastest

convergence. As we use only ten gradient steps for adaptation as

SenSys ’19, November 10–13, 2019, New York, NY, USA Taesik Gong, Yeonsu Kim, Jinwoo Shin, and Sung-Ju Lee

activity_num_source

1-shot 2-shot 5-shot 10-shot

MetaSense

1-shot 2-shot 5-shot 10-shot

MAML

1-shot 2-shot 5-shot 10-shot

PN

1-shot 2-shot 5-shot 10-shot

TrC

1-shot 2-shot 5-shot 10-shot

Src+Tgt

0

10

20

30

40

50

60

70

80

90

100

1-shot 2-shot 5-shot 10-shot

A
cc

u
ra

cy
 (

%
)

Src
2 Conditions

5 Conditions

9 Conditions (default)

(a) Activity recognition.

speech_num_source

1-shot 2-shot 5-shot 10-shot

MetaSense

1-shot 2-shot 5-shot 10-shot

MAML

1-shot 2-shot 5-shot 10-shot

PN

1-shot 2-shot 5-shot 10-shot

TrC

1-shot 2-shot 5-shot 10-shot

Src+Tgt

0

10

20

30

40

50

60

70

80

90

100

1-shot 2-shot 5-shot 10-shot

A
cc

u
ra

cy
 (

%
)

Src
2 Conditions

5 Conditions

9 Conditions (default)

(b) Speech recognition.

Figure 10: Accuracy with a different number of ICDs.

activity_model_size

1-shot 2-shot 5-shot 10-shot

MetaSense

1-shot 2-shot 5-shot 10-shot

MAML

1-shot 2-shot 5-shot 10-shot

PN

1-shot 2-shot 5-shot 10-shot

TrC

1-shot 2-shot 5-shot 10-shot

Src+Tgt

1-shot 2-shot 5-shot 10-shot

Tgt

0

10

20

30

40

50

60

70

80

90

100

1-shot 2-shot 5-shot 10-shot

A
cc

u
ra

cy
 (

%
)

Src
Shallow

Default

Deep

(a) Activity recognition.

speech_model_size

1-shot 2-shot 5-shot 10-shot

MetaSense

1-shot 2-shot 5-shot 10-shot

MAML

1-shot 2-shot 5-shot 10-shot

PN

1-shot 2-shot 5-shot 10-shot

TrC

1-shot 2-shot 5-shot 10-shot

Src+Tgt

1-shot 2-shot 5-shot 10-shot

Tgt

0

10

20

30

40

50

60

70

80

90

100

1-shot 2-shot 5-shot 10-shot

A
cc

u
ra

cy
 (

%
)

Src
Shallow

Default

Deep

(b) Speech recognition.

Figure 11: Accuracy of different models.

described in §4.1.3, MetaSense converges with only ten gradient

steps. A different number of gradient steps could be used, e.g., more

steps for achieving higher accuracy or fewer steps for minimizing

the training overhead.

4.5 Impact of Number of Conditions
Since MetaSense leverages the source dataset for generating tasks,

the number of available data is important for building a good base

model. The number of available ICDs, i.e., the number of individ-

ual conditions the source dataset has, affects the performance of

MetaSense. We evaluate MetaSense by varying the number of ICDs

from 2, 5 to 9 (9 is the default used in other experiments). We report

the average accuracy of Src, Src+Tgt, TrC, and MetaSense for 1, 2, 5,

and 10-shot cases with our activity and speech recognition datasets.

We omit Tgt as it only uses a few shots from the target, i.e., do not

utilize the source dataset.

Figure 10 reports the average accuracy with a different number

of ICDs (2 Conditions, 5 Conditions, and 9 Conditions). The overall

trend is that as the number of available ICDs increases, the accuracy

is also improved. Interestingly, the accuracy gain is more prominent

in the speech recognition dataset. We think this is because our

speech recognition task is more generalizable from the existing

conditions than our activity recognition task, and hence the higher

number of available conditions, the better the accuracy. Whereas

in activity recognition where we believe the individual condition

difference is more severe, the accuracy improvement is visible only

in MetaSense. This shows that for the baselines, the quantity of the

conditions does not ensure better accuracy due to the heterogeneity

in the input distributions between individual conditions, while

MetaSense can benefit from a larger amount of ICDs because of

cleverly generated tasks and meta-learned knowledge from them.

4.6 Impact of Model Size
To evaluate whether the performance of MetaSense and other base-

lines are impacted by the size of the model, we vary the architec-

tures. We test three models: (i) 5 convolutional layers + 3 fully-

connected layers (Default), (ii) 3 convolutional layers + 2 fully-

connected layers (Shallow), and (iii) 7 convolutional layers + 4

MetaSense: Few-Shot Adaptation to Untrained Conditions in Deep Mobile Sensing SenSys ’19, November 10–13, 2019, New York, NY, USA

hhar

0
10
20
30
40
50
60
70
80
90

100

1-shot 2-shot 5-shot 10-shot

A
cc

u
ra

cy
 (

%
)

Src Tgt Src+Tgt TrC PN MAML MetaSense

Figure 12: Accuracy of the baselines and MetaSense on the
HHAR dataset.

fully-connected layers (Deep). We report the average accuracy of 1,

2, 5, and 10-shot cases.

Figure 11 shows the accuracy of the different models for the

activity and speech recognition datasets. In general, the deeper the

model, the higher the accuracy, especially for MetaSense. Thanks

to our regularization techniques in §4.1.3, the deeper models have

more capacity to learn the representations for the target task, with-

out being heavily overfitted to the training data. However, in the

case of Tgt for speech recognition, our regularization does not help

and the accuracy drops as the model size increases. This is due to

overfitting since Tgt only uses a few shots from the target (DNN

models typically, require a large amount of data to avoid overfitting).

In MetaSense, the accuracy is monotonously improved as the size

of the model increases. The results demonstrate that MetaSense’s

outstanding performance over the baselines is not much sensitive

to a certain size of the model.

4.7 Generalizability for Other Datasets
We use additional public datasets, Heterogeneity Human Activity

Recognition (HHAR) [45] and Daily and Sports Activities (DSA) [2]

datasets, to further generalize MetaSense’s performance. We use

these two datasets as their data collection partly includes conditions.

4.7.1 HHAR. This dataset was collected with nine users for six

human activities. Each user was equipped with eight smartphones

around the waist and four smartwatches in the arms and logged

accelerometer and gyroscope values for each activity. This dataset

has user and device-model dependency but does not include various

device positions as eachmobile device is located at specific positions.

We use the 256-length window with 50% overlapping between

two consecutive windows [45]. After eliminating duplicate device

models and conditions with less than 10 shots, we have six users

and four different devices that result in a total of 24 conditions.

We evaluate each 24 conditions with 15 (5 × 3) ICDs, ensuring no

overlap in either the target device or the user. We report the average

accuracy of the 24 conditions.

4.7.2 DSA. This dataset was collected with eight users for 19 daily

and sports activities. Each user was equipped with the same five

sensor units, with each unit composed of an accelerometer, a gy-

roscope, and a magnetometer, on five different positions: torso,

right arm, left arm, right leg, and left leg. This dataset therefore

has user and sensor-position dependencies. We use the 125-length

window [2]. There are a total of 40 conditions, and similar to HHAR,

we evaluate each of 40 conditions with 28 (7 × 4) exclusive ICDs.

We report the average accuracy of the 40 conditions.

dsa

0
10
20
30
40
50
60
70
80
90

100

1-shot 2-shot 5-shot 10-shot

A
cc

u
ra

cy
 (

%
)

Src Tgt Src+Tgt TrC PN MAML MetaSense

Figure 13: Accuracy of the baselines and MetaSense on the
DSA dataset.

4.7.3 Results. Figures 12 and 13 show the accuracy of the base-

lines and MetaSense with the HHAR and DSA datasets, respectively.

The results indicate that the effectiveness of MetaSense general-

izes to other datasets. The baselines show different trends between

different datasets. As noted in our datasets earlier (§4.2.2), higher

accuracy of Src and Src+Tgt in the HHAR dataset than in the DSA

dataset means HHAR has more similar distributions among the

conditions. On the other hand, Src and Src+Tgt perform poorly

in the DSA dataset due to the severe differences between condi-

tions. MetaSense nevertheless shows robust performance due to its

flexibility in learning and adaptivity to new conditions.

5 RELATEDWORK
We summarize prior approaches that tackle the challenge of diverse

dependencies in mobile sensing. The issue of user and device depen-

dencies in mobile sensing has been brought to attention [45, 47, 51].

A study shows personalized models for HAR greatly outperform

general models [51], which shows the impact of user dependency.

Another study demonstrates different smart devices have different

sensor biases, different sampling rates, and unstable sampling rates,

which make it difficult to build a generalized model for different

devices [45, 47].

To resolve these issues, there have been many proposals, which

we categorize in the following sections. In summary, most existing

studies are either limited to a particular dependency (e.g., sensor

orientation or user) or to specific sensors and applications. On

the contrary, MetaSense targets numerous individual conditions

composed of various dependencies and is applicable to any deep

neural models.

5.1 Sensor Calibration
Sensor calibration [8–10, 36, 38, 40, 41, 47, 52] is a direction for re-

solving the dependency problem. For instance, orientation-independent

features are calculated from the accelerometer by summing the

squared value of each x, y, and z sensor value [40, 41]. Some stud-

ies utilize additional sensors, e.g., magnetometers to convert the

values into points in a global coordinate system to resolve different

sensor orientations and positions [9, 36, 38, 47]. A recent approach

attempts to resolve IMU sensor bias, scaling factor, and noise errors

with machine learning [8]. However, these methods focus on a spe-

cific sensor type (e.g., IMU), a specific dependency (e.g., orientation)

or a specific application (e.g., HAR), which require expertise on

each domain and would not apply to other domains. MetaSense,

on the other hand, takes a holistic approach and tackles multiple

dependencies and domains. Nevertheless, previous approaches are

SenSys ’19, November 10–13, 2019, New York, NY, USA Taesik Gong, Yeonsu Kim, Jinwoo Shin, and Sung-Ju Lee

orthogonal to our solution and could be adopted to further improve

the performance of MetaSense.

5.2 Synthetic Training
Anothermethod tomitigate the dependency problem is to trainwith

synthetic training examples generated from the source dataset [21,

53]. Mathur et al. [21] proposed building a deep model with syn-

thetic data made of multiple devices to mitigate hardware/software

heterogeneities of smart devices. However, this solution is focused

only on the device dependency. CrossSense [53] proposed a roam-

ing model for large-scale cross-siteWiFi sensing. It leverages a large

amount of source data for generating synthetic data that mimic

unseen instances or users from the target site. However, it requires

thousands of samples from the target site to train the roaming

model, while MetaSense requires only a few shots.

5.3 Utilizing Unlabeled Target Data
Another line of research utilizes unlabeled data from a target con-

dition [4, 6, 12, 13, 48]. This approach employs transfer learning (or

domain adaptation); with labeled data from the source and unla-

beled data from the target condition, it trains an adaptive model for

the target condition. The advantage of this approach is that target

users need not label their data. Although the approach does not

require labeled target data, it needs a large amount of target data

compared to our few-shot learning scheme. Furthermore, these

approaches have been limited to specific individual conditions, e.g.,

changes of sensor positions on the body [4, 48] and changes of

users with the same device [6]. It is uncertain whether such unsu-

pervised approach would be accurate under a complex combination

of multiple dependencies where the input distribution is different

from the source dataset; a study showed that the performance for

HAR under individual conditions is only marginally improved or

often dropped with the unlabeled target data [13].

6 DISCUSSION
We discuss the limitations of MetaSense and suggest future research.

6.1 Improving Accuracy
Although our evaluation showed that MetaSense outperforms the

baselines, a higher accuracy (over 90%) even with only 1 or 2-shots

would be desirable. To achieve this ultimate goal, one could try

more advanced model architectures that specialize in the target

problem. For the current implementation of MetaSense, we did

not excessively search the hyperparameter space. There might be

better hyperparameters and model architectures that could im-

prove the performance. Since we decouple our algorithm to the

network architecture, we believe MetaSense could further improve

the performance with different architectures for resolving individ-

ual conditions.

6.2 Long-term Behavior Changes
Our current design of MetaSense requires users to provide a few

shots only at the initial adaptation step. After the adaptation, the

model is adapted to the target user’s condition. However, user

behaviors could change with time (e.g., walking slowly when one

gets ill) and this could affect the model performance. To handle such

a scenario, one can periodically adapt the model parameters for fast

adaptation. Since the model is already adapted for that user at the

initial step, the model would require even fewer data to adapt to the

behavior changes.We remark that a recentmeta learning scheme [1]

that continuously adapts to non-stationary environments could be

a promising direction to explore for adapting to long-term behavior

changes.

6.3 Other Dependencies
We considered a typical practical scenario in mobile sensing where

there exist different user behaviors and different devices (accord-

ingly sensor positions and orientations). We realize in real deploy-

ments there could be other unexpected dependency problems such

as environmental changes that we have not considered. However,

our approach could be employed in other dependency problems.

For instance, activity recognition with Wi-Fi signals faces the chal-

lenge of environment and user dependency [12, 53]. In situations

where combinations of dependencies make input distributions sig-

nificantly heterogeneous, we believe the insights and methods from

MetaSense could be applied.

7 CONCLUSION
We investigated the problem of countless individual conditions in

mobile sensing and how deep learning models perform under such

situations. Inspired by the recent successes of meta learning in the

machine learning community, we proposed MetaSense, a few-shot

adaptation system that learns to learn for deep mobile sensing as

a solution to this problem. MetaSense requires only a few shots

from target users and thus entails minimal user effort. MetaSense

leverages intelligently generated tasks and parameter updates via

meta learning for resolving individual conditions in mobile sensing.

In essence, MetaSense is model-agnostic, i.e., applicable to any deep

learning models, and condition-agnostic, i.e., its coverage is not

limited to a specific type of sensors and applications.

Our evaluation with multiple real-world datasets showed that

MetaSense outperforms other approaches in both accuracy and

adaptation time with only a few shots. Our experiments also demon-

strated that the performance of MetaSense is not biased to certain

model architectures and datasets. We believe MetaSense is a step to-

wards mainstream adoption of mobile sensing for practical impact.

The proposed meta learning approach and the insights from our

study could be applied in innovative mobile sensing applications

so that everyday users could deploy them without being limited by

operating conditions.

ACKNOWLEDGMENTS
This work was supported in part by Next-Generation Information

Computing Development Program through the National Research

Foundation of Korea (NRF) funded by the Ministry of Science and

ICT (NRF-2017M3C4A7083534) and Institute for Information &

Communications Technology Promotion (IITP) grant funded by the

Korea government (MSIP) (No.B0717-16-0034, Versatile Network

System Architecture for Multi-dimensional Diversity).

MetaSense: Few-Shot Adaptation to Untrained Conditions in Deep Mobile Sensing SenSys ’19, November 10–13, 2019, New York, NY, USA

REFERENCES
[1] Maruan Al-Shedivat, Trapit Bansal, Yuri Burda, Ilya Sutskever, Igor Mordatch,

and Pieter Abbeel. 2018. Continuous Adaptation via Meta-Learning in Nonsta-

tionary and Competitive Environments. In International Conference on Learning
Representations (ICLR).

[2] Kerem Altun, Billur Barshan, and Orkun Tunçel. 2010. Comparative study on

classifying human activities with miniature inertial and magnetic sensors. Pattern
Recognition 43, 10 (2010), 3605–3620.

[3] Jagmohan Chauhan, Jathushan Rajasegaran, Suranga Seneviratne, Archan Misra,

Aruna Seneviratne, and Youngki Lee. 2018. Performance Characterization of Deep

Learning Models for Breathing-based Authentication on Resource-Constrained

Devices. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 2, 4 (2018), 158.

[4] Yiqiang Chen, Jindong Wang, Meiyu Huang, and Han Yu. 2018. Cross-

position Activity Recognition with Stratified Transfer Learning. arXiv preprint
arXiv:1806.09776 (2018).

[5] Qian Dai, Jiahui Hou, Panlong Yang, Xiangyang Li, Fei Wang, and Xumiao

Zhang. 2017. The sound of silence: end-to-end sign language recognition using

smartwatch. In Proceedings of the 23rd Annual International Conference on Mobile
Computing and Networking. ACM, 462–464.

[6] Ramin Fallahzadeh and Hassan Ghasemzadeh. 2017. Personalization without

user interruption: Boosting activity recognition in new subjects using unlabeled

data. In Proceedings of the 8th International Conference on Cyber-Physical Systems.
ACM, 293–302.

[7] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-

learning for fast adaptation of deep networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70. JMLR. org, 1126–1135.

[8] Andreas Grammenos, Cecilia Mascolo, and Jon Crowcroft. 2018. You Are Sensing,

but Are You Biased?: A User Unaided Sensor Calibration Approach for Mobile

Sensing. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 2, 1 (2018), 11.

[9] Fuqiang Gu, Allison Kealy, Kourosh Khoshelham, and Jianga Shang. 2015. User-

independent motion state recognition using smartphone sensors. Sensors 15, 12
(2015), 30636–30652.

[10] Haodong Guo, Ling Chen, Gencai Chen, and Mingqi Lv. 2016. Smartphone-

based activity recognition independent of device orientation and placement.

International Journal of Communication Systems 29, 16 (2016), 2403–2415.
[11] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.

2017. Densely connected convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 4700–4708.

[12] Wenjun Jiang, Chenglin Miao, Fenglong Ma, Shuochao Yao, Yaqing Wang, Ye

Yuan, Hongfei Xue, Chen Song, Xin Ma, Dimitrios Koutsonikolas, et al. 2018.

Towards Environment Independent Device Free Human Activity Recognition. In

Proceedings of the 24th Annual International Conference on Mobile Computing and
Networking. ACM, 289–304.

[13] Md Abdullah Hafiz KHAN, Nirmalya Roy, and Archan Misra. 2018. Scaling

human activity recognition via deep learning-based domain adaptation. (2018).

[14] Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-

mization. International Conference for Learning Representations (ICLR) (2015).
[15] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. 2015. Siamese neural

networks for one-shot image recognition. In ICML Deep Learning Workshop,
Vol. 2.

[16] Heli Koskimäki and Pekka Siirtola. 2016. Adaptive model fusion for wearable

sensors based human activity recognition. In 2016 19th International Conference
on Information Fusion (FUSION). IEEE, 1709–1713.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[18] Nicholas D Lane, Petko Georgiev, and Lorena Qendro. 2015. DeepEar: robust

smartphone audio sensing in unconstrained acoustic environments using deep

learning. In Proceedings of the 2015 ACM International Joint Conference on Perva-
sive and Ubiquitous Computing. ACM, 283–294.

[19] Gierad Laput, Karan Ahuja, Mayank Goel, and Chris Harrison. 2018. Ubicoustics:

Plug-and-Play Acoustic Activity Recognition. In The 31st Annual ACM Symposium
on User Interface Software and Technology. ACM, 213–224.

[20] Jin Lu, Chao Shang, Chaoqun Yue, Reynaldo Morillo, Shweta Ware, Jayesh Ka-

math, Athanasios Bamis, Alexander Russell, Bing Wang, and Jinbo Bi. 2018. Joint

modeling of heterogeneous sensing data for depression assessment via multi-task

learning. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 2, 1 (2018), 21.

[21] Akhil Mathur, Tianlin Zhang, Sourav Bhattacharya, Petar Veličković, Leonid

Joffe, Nicholas D Lane, Fahim Kawsar, and Pietro Lió. 2018. Using deep data

augmentation training to address software and hardware heterogeneities in

wearable and smartphone sensing devices. In Proceedings of the 17th ACM/IEEE
International Conference on Information Processing in Sensor Networks. IEEE Press,

200–211.

[22] Abhinav Mehrotra and Mirco Musolesi. 2018. Using Autoencoders to Automati-

cally Extract Mobility Features for Predicting Depressive States. Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2, 3 (2018),
127.

[23] Leo Mirani. 2015. There are now more than 24,000 different Android de-

vices. https://qz.com/472767/there-are-now-more-than-24000-different-

android-devices/

[24] Francisco Javier Ordóñez Morales and Daniel Roggen. 2016. Deep convolutional

feature transfer across mobile activity recognition domains, sensor modalities and

locations. In Proceedings of the 2016 ACM International Symposium on Wearable
Computers. ACM, 92–99.

[25] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.

2017. Automatic differentiation in PyTorch. In NIPS.
[26] Valentin Radu, Catherine Tong, Sourav Bhattacharya, Nicholas D Lane, Cecilia

Mascolo, Mahesh K Marina, and Fahim Kawsar. 2018. Multimodal deep learning

for activity and context recognition. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 1, 4 (2018), 157.

[27] Hammerla, Nils Y and Kirkham, Reuben and Andras, Peter and Ploetz, Thomas.

2013. On preserving statistical characteristics of accelerometry data using their

empirical cumulative distribution. In Proceedings of the 2013 International Sympo-
sium on Wearable Computers. ACM, 65–68.

[28] Kwon, Hyeokhyen and Abowd, Gregory D and Plötz, Thomas. 2018. Adding

structural characteristics to distribution-based accelerometer representations for

activity recognition using wearables. In Proceedings of the 2018 ACM International
Symposium on Wearable Computers. ACM, 72–75.

[29] Lake, Brenden M and Salakhutdinov, Ruslan and Tenenbaum, Joshua B. 2015.

Human-level concept learning through probabilistic program induction. Science
350, 6266 (2015), 1332–1338.

[30] Li, Hong and Abowd, Gregory D and Plötz, Thomas. 2018. On specialized window

lengths and detector based human activity recognition. In Proceedings of the 2018
ACM International Symposium on Wearable Computers. ACM, 68–71.

[31] Plötz, Thomas and Guan, Yu. 2018. Deep learning for human activity recognition

in mobile computing. Computer 51, 5 (2018), 50–59.
[32] Seyed Ali Rokni, Marjan Nourollahi, and Hassan Ghasemzadeh. 2018. Person-

alized Human Activity Recognition Using Convolutional Neural Networks. In

Thirty-Second AAAI Conference on Artificial Intelligence.
[33] Charissa Ann Ronao and Sung-Bae Cho. 2015. Deep convolutional neural net-

works for human activity recognition with smartphone sensors. In International
Conference on Neural Information Processing. Springer, 46–53.

[34] Charissa Ann Ronao and Sung-Bae Cho. 2016. Human activity recognition with

smartphone sensors using deep learning neural networks. Expert systems with
applications 59 (2016), 235–244.

[35] Ramyar Saeedi, Skyler Norgaard, and Assefaw H Gebremedhin. 2017. A closed-

loop deep learning architecture for robust activity recognition using wearable

sensors. In Big Data (Big Data), 2017 IEEE International Conference on. IEEE,
473–479.

[36] Jayita Saha, Chandreyee Chowdhury, and Supama Biswas. 2017. Device inde-

pendent activity monitoring using smart handhelds. In Cloud Computing, Data
Science & Engineering-Confluence, 2017 7th International Conference on. IEEE,
406–411.

[37] Adam Santoro, Sergey Bartunov,MatthewBotvinick, DaanWierstra, and Timothy

Lillicrap. 2016. Meta-learning with memory-augmented neural networks. In

International conference on machine learning. 1842–1850.
[38] Muhammad Shoaib, Stephan Bosch, Ozlem Incel, Hans Scholten, and Paul

Havinga. 2015. A survey of online activity recognition using mobile phones.

Sensors 15, 1 (2015), 2059–2085.
[39] Pekka Siirtola, Heli Koskimäki, and Juha Röning. 2016. From user-independent

to personal human activity recognition models using smartphone sensors. Proc
ESANN’16 (2016), 471–476.

[40] Pekka Siirtola and Juha Röning. 2012. Recognizing human activities user-

independently on smartphones based on accelerometer data. IJIMAI 1, 5 (2012),
38–45.

[41] Pekka Siirtola and Juha Röning. 2013. Ready-to-use activity recognition for

smartphones. In Computational Intelligence and Data Mining (CIDM), 2013 IEEE
Symposium on. IEEE, 59–64.

[42] Pekka Siirtola and Juha Röning. 2016. Reducing Uncertainty in User-independent

Activity Recognition-A Sensor Fusion-based Approach.. In ICPRAM. 611–619.

[43] Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks

for few-shot learning. In Advances in Neural Information Processing Systems.
4077–4087.

[44] Andrea Soro, Gino Brunner, Simon Tanner, and RogerWattenhofer. 2019. Recogni-

tion and Repetition Counting for Complex Physical Exercises with Deep Learning.

Sensors 19, 3 (2019), 714.
[45] Allan Stisen, Henrik Blunck, Sourav Bhattacharya, Thor Siiger Prentow,

Mikkel Baun Kjærgaard, Anind Dey, Tobias Sonne, and Mads Møller Jensen.

2015. Smart devices are different: Assessing and mitigatingmobile sensing het-

erogeneities for activity recognition. In Proceedings of the 13th ACM Conference

https://qz.com/472767/there-are-now-more-than-24000-different-android-devices/
https://qz.com/472767/there-are-now-more-than-24000-different-android-devices/

SenSys ’19, November 10–13, 2019, New York, NY, USA Taesik Gong, Yeonsu Kim, Jinwoo Shin, and Sung-Ju Lee

on Embedded Networked Sensor Systems. ACM, 127–140.

[46] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. 2014. Deepface:

Closing the gap to human-level performance in face verification. In Proceedings
of the IEEE conference on computer vision and pattern recognition. 1701–1708.

[47] Yunus Emre Ustev, Ozlem Durmaz Incel, and Cem Ersoy. 2013. User, device and

orientation independent human activity recognition on mobile phones: Chal-

lenges and a proposal. In Proceedings of the 2013 ACM conference on Pervasive
and ubiquitous computing adjunct publication. ACM, 1427–1436.

[48] Jindong Wang, Vincent W Zheng, Yiqiang Chen, and Meiyu Huang. 2018. Deep

transfer learning for cross-domain activity recognition. In Proceedings of the 3rd
International Conference on Crowd Science and Engineering. ACM, 16.

[49] Zhelong Wang, Donghui Wu, Raffaele Gravina, Giancarlo Fortino, Yongmei

Jiang, and Kai Tang. 2017. Kernel fusion based extreme learning machine for

cross-location activity recognition. Information Fusion 37 (2017), 1–9.

[50] Pete Warden. 2018. Speech commands: A dataset for limited-vocabulary speech

recognition. arXiv preprint arXiv:1804.03209 (2018).
[51] Gary M Weiss and Jeffrey W Lockhart. 2012. The impact of personalization on

smartphone-based activity recognition. In AAAI Workshop on Activity Context
Representation: Techniques and Languages. 98–104.

[52] Rong Yang and Baowei Wang. 2016. PACP: a position-independent activity

recognition method using smartphone sensors. Information 7, 4 (2016), 72.

[53] Jie Zhang, Zhanyong Tang, Meng Li, Dingyi Fang, Petteri Nurmi, and Zheng

Wang. 2018. CrossSense: Towards Cross-Site and Large-Scale WiFi Sensing. In

Proceedings of the 24th Annual International Conference on Mobile Computing and
Networking. ACM, 305–320.

[54] Bing Zhou, Jay Lohokare, Ruipeng Gao, and Fan Ye. 2018. EchoPrint: Two-factor

Authentication using Acoustics and Vision on Smartphones. In Proceedings of
the 24th Annual International Conference on Mobile Computing and Networking.
ACM, 321–336.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Why Conditions Matter
	2.2 Case Study: Activity & Speech Recognition

	3 MetaSense
	3.1 Overview: Meta Learned Adaptation
	3.2 Task Generation
	3.3 Parameter Updates
	3.4 Adaptation

	4 Experiments
	4.1 Settings
	4.2 Accuracy
	4.3 Effect of Task Generation
	4.4 Adaptation Overhead
	4.5 Impact of Number of Conditions
	4.6 Impact of Model Size
	4.7 Generalizability for Other Datasets

	5 Related Work
	5.1 Sensor Calibration
	5.2 Synthetic Training
	5.3 Utilizing Unlabeled Target Data

	6 Discussion
	6.1 Improving Accuracy
	6.2 Long-term Behavior Changes
	6.3 Other Dependencies

	7 Conclusion
	Acknowledgments
	References

