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Abstract—Many applications utilize sensors on mobile devices and apply deep learning for diverse applications. However, they have
rarely enjoyed mainstream adoption due to many different individual conditions users encounter. Individual conditions are characterized
by users’ unique behaviors and different devices they carry, which collectively make sensor inputs different. It is impractical to train
countless individual conditions beforehand and we thus argue meta-learning is a great approach in solving this problem. We present
MetaSense that leverages “seen” conditions in training data to adapt to an “unseen” condition (i.e., the target user). Specifically, we
design a meta-learning framework that learns “how to adapt” to the target via iterative training sessions of adaptation. MetaSense
requires very few training examples from the target (e.g., one or two) and thus requires minimal user effort. In addition, we propose a
similar condition detector (SCD) that identifies when the unseen condition has similar characteristics to seen conditions and leverages
this hint to further improve the accuracy. Our evaluation with 10 different datasets shows that MetaSense improves the accuracy of
state-of-the-art transfer learning and meta learning methods by 15 and 11 percent, respectively. Furthermore, our SCD achieves
additional accuracy improvement (e.g., 15 percent for human activity recognition).

Index Terms—Mobile computing, mobile sensing, machine learning, meta learning, few-shot learning
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1 INTRODUCTION
WITH the utilization and coupling between deep learning

and various sensors in mobile devices, mobile sensing
applications are services have become boundless. Recent
mobile sensing applications include human activity recogni-
tion [1], [2], [3], [4], acoustic context recognition [5], [6],
device-free authentication [7], [8], sign language recogni-
tion [9], emotional status recognition [10], [11], and even
Parkinson’s disease detection [12]. These mobile sensing
applications show the potential of benefits from context-based
services, enabled by a single device, e.g., a smartphone.
Although these mobile sensing applications have great
potential for enriching our daily lives, most fail to enjoy main-
stream adoption and remain as merely research prototypes
due to the critical challenge when deployed to real users: per-
formance degradation caused by different individual conditions
users have. We refer to an individual condition as a combination
of all user-specific dependencies that affect sensor readings
(e.g., the user’s behavior pattern and the specific device the
user has). For example, in human activity recognition with
smartphone motion sensors, users have different characteristics
in their behaviors for the same activity; someone walks slowly
while others fast with their own walk stride. In addition, their
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mobile devices have unique specifications such as weight,
shape, sensor sampling rates, errors and biases, to name a few.
These dependencies, as they make sensor readings dissimilar,
significantly degrade the performance of mobile sensing [13],
[14], [15]. Considering the possible number of different user
behaviors and devices, and even the numerous combinations
between them, it is an important research question to overcome
individual conditions for mobile sensing to be practically avail-
able for wider deployment.

As deep learning performs well under trained conditions, a
naive approach to solve this problem is to train a model on all
possible individual conditions beforehand. However, in order
to train numerous parameters without overfitting, it often
requires more than thousands of training instances [16], [17],
[18]. This approach is infeasible as it requires the tedious and
costly work of the data collection and labeling process of every
user. Sensor calibration or extracting condition-independent
features have been considered as an alternative [14], [19], [20],
[21], [22], [23], [24], [25], [26]. For example, one can use the
squared sum of each x, y, and z-axis of accelerometer values
to make it an orientation-independent feature with motion
sensors [19], [23]. This approach, however, is limited to a spe-
cific sensor type (e.g., accelerometers), a specific dependency
(e.g., phone orientation), or a specific application (e.g., human
activity recognition). As it requires a new tailored method
when the sensor type, dependency, and application vary, this
cannot be a general solution for diverse types of mobile sens-
ing applications. We are motivated by the aforementioned
challenges and the limitations of existing approaches, and
seek to answer the following important question: “How to
overcome the individual condition problem in mobile sensing
with minimal user efforts?”

We present MetaSense, a framework that is capable of
adapting to unknown individual conditions with very few
training examples (e.g., one or two) from the target user’s
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condition, i.e., few-shot adaptation. To handle many individ-
ual conditions, we design a meta learning framework for
mobile sensing. Specifically, from the available (seen) train-
ing dataset, MetaSense first generates multiple episodic
tasks via our unique task generation strategies. Each task is
specially designed to teach the sensing model how to adapt
to new conditions. With these tasks, MetaSense trains the
model in a way that its parameters are adaptive to condition
changes. Once the model is trained, it has the ability to
adapt its parameters to the target users’ condition, given
only a few training examples from the target before using
the model. MetaSense has several advantages over existing
solutions: (i) While achieving high accuracy with adapta-
tion, MetaSense significantly reduces users” burden of data
collection as it requires only few training examples just once
before using the model. (ii) MetaSense requires less adapta-
tion time than conventional training of deep neural net-
works and thus is suited for resource-constrained mobile
devices. (iii) MetaSense can be applied to any deep learning
models, any type of sensors, or any type of applications,
and thus it is a general model-agnostic and condition-
agnostic solution.

Existing meta learning algorithms for few-shot learn-
ing [27], [28], [29], [30] train the models with a large corpus
of image data. In mobile sensing, however, there is a limited
number of available datasets and aforementioned numerous
individual conditions; therefore, meta learning in mobile
sensing requires a different and sophisticated training
method compared to existing methods. The unique contri-
bution of MetaSense, beyond adopting meta learning to
mobile sensing, is that we design our unique task genera-
tion strategies to maximally utilize the limited data for train-
ing mobile sensing models. We believe MetaSense is the first
realization of meta learning into practical mobile sensing
and thus bridges the gap between research and practice.

While our first version of MetaSense [31] has shown good
accuracy in mobile sensing when deployed in untrained
individual conditions, here, we take a step further and
investigate the situation where certain conditions in the
source dataset are similar to a target condition. Different
mobile sensing applications have their unique sensing char-
acteristics and thus a different level of heterogeneity among
conditions. Some sensing applications have a lower degree
of heterogeneity among conditions. For example, ambient
scene detection [32] and song identification [33] do not
depend on users” behaviors. When certain conditions in the
source are very similar to the target condition, this can be
an opportunity for MetaSense to improve the performance
for the target condition. To that end, we measure the impact
of utilizing similar conditions and propose similar condition
detector that identifies when similar conditions exist in the
source and leverages the hint to further enhance the accu-
racy (Section 4).

We evaluate MetaSense with two datasets collected in the
wild: (i) human activity recognition via motion sensor, and
(ii) speech recognition via microphones, which are collected
under realistic settings considering different users’ behav-
iors, device models and types, sensor positions and orienta-
tions, and so on. We also evaluate MetaSense with eight
different public datasets, including activity detection, stress
detection, and vision datasets to understand the
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performance and the generalizability of our approach for
other domains. Our evaluation of MetaSense with six base-
lines, including the state-of-the-art transfer learning [34]
and meta learning algorithms [27], [30], indicates that Meta-
Sense not only outperforms existing solutions in terms of
accuracy but also requires significantly less adaptation time.
In particular, MetaSense outperforms the accuracy of trans-
fer learning by 15 percent and meta learning by 11 percent
on average, thanks to our unique task generation strategies.
Moreover, our similar condition detector further improves the
performance, especially when only a few data is provided
(e.g., 15 percent additional improvement for the activity rec-
ognition dataset).

We summarize our key contributions as follows: (i) We
present MetaSense, a meta-learning based adaptation frame-
work for deep mobile sensing. To the best of our knowl-
edge, MetaSense is the first attempt to adopt meta learning
for the individual condition problem in deep mobile sens-
ing. (ii) We propose three task generation strategies to address
limited available data, which are keys to being effective in
mobile sensing. (iii) We propose similar condition detector
that determines whether similar conditions to the target
condition exist in the source dataset and utilizes the hint for
improving the performance.

2 BACKGROUND AND MOTIVATION

We illustrate why models should adapt to individual con-
ditions in mobile sensing. We investigate the factors that
degrade the in-the-wild performance of mobile sensing
applications and demonstrate the problem through two
case studies; human activity recognition and speech
recognition.

2.1 Why Conditions Matter

While recent studies have shown the potential of a variety
of mobile sensing applications powered by deep learn-
ing [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], they must
overcome the challenge of diverse individual conditions for
wider adoption. Mobile sensing applications get input
from the sensors in smart devices for their services, e.g.,
Inertial Measurement Unit (IMU) for motions and micro-
phone for audio. The sensed values, however, are highly
dependent on various conditions. We summarize the fol-
lowing two major categories where the individual condi-
tions come from.

User Dependency. Humans have different physical condi-
tions and behaviors that make them unique from each
other. In human activity recognition (HAR) for instance,
users have dissimilar patterns of “walking” in terms of
speed and stride, which could be confused with someone’s
“running.” In addition, some people prefer to put their
phone in their pocket, while others hold in hand, and each
smartphone position makes different sensor readings even
with the same device. Since wusers’ behaviors are
unbounded and cannot be easily characterized in advance,
user dependency is one of the major obstacles for mobile
sensing to overcome.

Device Dependency. Users have their own devices that
have a different shape, weight, sensor specification, and so
on, which make the model get different sensor values.
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Fig. 1. Comparison of raw signals between and within users P1 and P2. Attempt 1 and 2 are specified for each user.

Especially for IMU sensors, different devices have different
sensor biases, errors, and sampling rates [15]. In addition,
software heterogeneity (e.g., different versions of OS) makes
sensor readings different [35]. With the recent spread of
wearable devices, some users might run the sensing appli-
cation in their wearable devices instead of smartphones. As
the number of unique Android devices has already
exceeded over 24,000 in 2015 [36], it seems infeasible to col-
lect data from all possible devices in advance to train and
make the model work effectively for every device.

Previous studies have shown that the user and device
dependencies degrade the performance of mobile sens-
ing [13], [15]. While there have been attempts to resolve the
dependencies, most focus on isolated dependencies, e.g.,
user dependency [19], [37], [38], [39], [40], device position/
orientation [20], [21], [41], and hardware/software hetero-
geneity [26], [35]. However, mobile sensing when deployed
in practice, typically faces all of the dependencies.

2.2 Case Study: Activity & Speech Recognition

To understand how the individual condition affects deep
mobile sensing performance, we collected two datasets, i.e.,
activity and speech recognition, with ten different users (P1-
P10) and devices (seven smartphones and three smart-
watches). Activity recognition has nine activities, and speech
recognition has 14 keywords. Note that there are no dupli-
cate devices or users, and data collection is performed with-
out specific restrictions to allow and encourage different
behaviors of users. The resulting dataset contains ten indi-
vidual conditions from ten users. The details of the dataset
and preprocessing are described in Section 5.1.1.

Fig. 1 compares the raw signal within and between users
P1 and P2. Fig. 1a illustrates the square root of the squared
sum of z, y, and z-axis accelerations for the “jumping” activ-
ity of users P1 and P2. We specify two different instances of
the jumping activity as Attemptl and Attempt2 in order to
compare within-condition variability to cross-conditions
variability. Similarly, Fig. 1b shows the raw audio waves
from the keyword “yes”. The top two graphs show two dif-
ferent instances of P1 while the bottom two graphs show
those of P2. As shown in both figures, while two different
attempts from the same user appear similar, different condi-
tions make significantly different sensor readings even for
the same class (i.e., “jumping” and “yes”). This result clearly
suggests that a model trained on some conditions could per-
form poorly when faced with a new condition (Section 5.2).

3 META-LEARNED ADAPTATION

We present MetaSense by starting with an overview and the
meta learning scheme MetaSense uses (Section 3.1). We

then detail our task generation algorithms to catalyze the
effect of meta learning (Section 3.2), followed by the param-
eter update algorithm that makes the model adaptive to
untrained conditions (Section 3.3). With the generated
model, we explain how MetaSense can adapt rapidly to a
new/unseen user with a few labeled data (Section 3.4).

3.1 Overview: Meta-Learned Adaptation

We consider a practical scenario where a model developer
has a source dataset collected under several individual condi-
tions, e.g., activity recognition data from multiple users
measured with their own devices. Under the scenario, the
goal of MetaSense is to adapt to a new/unseen user’s condi-
tion when only a few target user’s data samples are avail-
able. We denote a labeled data instance for each class as a
shot. Note that we assume a few shots (e.g., one or two) are
given from the target user, and the original source dataset
does not contain any data samples from the target user.
Namely, a model developer first trains a base model with
the source dataset, and the model further adapts to the tar-
get user’s conditions using very small gradient steps of a
few labeled data samples.

To handle adaptation with only a few shots, we design a
meta learning framework, also known as learning to learn, to
train the model. Meta learning [27], [28], [29], [30] generally
aims to learn a new task or environment rapidly, by learning
how to learn. As an analogy, one can easily learn how to ride
an ice skate if she already knows how to ride a roller skate.
Our intuition behind using meta learning is that deep mobile
sensing systems could be deployed to numerous unknown
individual conditions, which could be resolved by learning
how to adapt to unknown conditions. Hence, the meta-objec-
tive of MetaSense is learning effective parameters that have
the ability to adapt to an unseen condition.

Fig. 2 shows an overview of MetaSense. MetaSense trains
the deep sensing model through two steps, i.e., base-model
training and adaptation. Specifically, MetaSense makes the
base model learn how to adapt to a new condition with only
a few shots and gradient steps. The base model is trained on
a set of tasks, where each task is generated from the source
dataset. Individual task mimics a situation where the model
performs under a new untrained condition. After training,
the base model has the knowledge of how to adapt to a new
condition with a few shots. In the adaptation step, a target
user provides a few shots to the model, and the model
adapts its parameters with a small number of gradient steps
(e.g., 10). When the similar condition detector determines if
there are similar source conditions that would help the
adaptation, MetaSense fetches extra shots from the condi-
tion, which we detail in Section 4. After the adaptation pro-
cess, the model is ready for the target user’s conditions.
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Fig. 2. MetaSense overview.

Algorithm 1. MetaSense Base-Model Training

Input: Source dataset D = {(z1,y,),..., (zn,yy)}, learning rate
hyperparameters o,
Output: Trained parameters ¢
1: 6 « random initialization
2: while not finished do

3 T « GenerateTaskD > Details in Section 3.2
4: for7,; €7 do
5 St, + K support samples from 7;
6: Qr, — K query samples from 7; where S7, N1 Qr, =0
7: Evaluate VyL7,(fy) with Sz, via Eq. (2)
8: 9’71, =0—oa-Volr,(fs) > GetT;-specific parameters
9: Evaluate L7, ( fg/T ) with Qr,

10: g = VeZTiﬁTi(feé )

11: 60— 6—pB-Adamgy’ > Update 6

Algorithm 1 outlines our base-model training method,
where we provide further details in Sections 3.2 and 3.3. We
refer to D = {(z1,9,), ..., (zn,yx)} as the source dataset, z;
is an input vector, and y; is a one-hot label vector where y; €
Y, Y is the set of all labels, and |Y| = M. The source dataset
has been collected from multiple conditions. Base-model
training algorithm outputs trained parameters 0 for a deep
sensing model fy(z). With D, MetaSense generates a set of
tasks 7 that are designed to boost the effect of meta-learning
objective, e.g., learning to adapt to the target condition (line 3).
We explain the details of task generation in Section 3.2. From
each generated 7; € 7, MetaSense samples a support set and a
query set without overlap between them (line 5-6). For each
task, MetaSense computes temporal parameters 9’71, via sto-
chastic gradient descent (SGD) with the support set and eval-
uates the loss function £7, with the temporal parameters and
the query set (line 7-9). The final parameters are updated by a
meta objective via Adam optimizer [42], which minimizes the
sum of each task-specificloss (line 1). We detail this parameter
update process in Section 3.3. Through this meta learning pro-
cess, the trained parameters learn an effective way to adapt to
the unseen task, i.e., the target condition.

3.2 Task Generation

Unlike existing meta learning methods where tasks are ran-
domly generated by sampling from a large available

dataset, how to efficiently and effectively leverage the lim-
ited source dataset is the unique challenge in applying meta
learning to mobile sensing. We view each task as each indi-
vidual condition in mobile sensing. Thus, the goal of our
task generation is to generate diverse and realistic individ-
ual conditions given the source dataset so that MetaSense
can teach the base model how to adapt to possible condition
changes via various tasks.

MetaSense generates a set of tasks 7 from D. Each task
7; € T has a set of data samples, {(z1,4,), ..., (Zng,, yNTi)}.
We assume the model developer has a source dataset D
from C individual conditions (e.g., a user wearing a smart-
watch on the left wrist, a user placing a smartphone in a
pocket, etc.). We let a subset of dataset D. C D, an individual
condition dataset (ICD) that represents a dataset from a spe-
cific condition such that

C
| D.=Dand D.NnD, =10,

c=1

ey

where U is the set of all elements in the collection, ¢ #
d, and 1 < ¢, d < C. We devise three strategies of generating
tasks to maximize the effect of meta learning for few-shot
adaptation to individual conditions as follows.

Per-Condition Tasks. To mimic a situation where the base
model meets an unseen target condition when deployed to
the target user, we generate each per-condition task from a
sampled data by each ICD. Specifically, we generate T
where 7; C D.—; for all 1 <¢ < C, as illustrated in Fig. 3.
With these tasks, the base model experiences adapting to
real individual conditions. As the number of per-condition
tasks is equal to the number of collected conditions C, the
number of conditions the model developer affects the per-
formance of base model training. We found that the more
conditions the base model is trained on, the better the per-
formance. This is because the base model has more opportu-
nities in advance to experience diverse conditions before
being deployed to the target user.

Multi-Conditioned Tasks. We generate multi-conditioned
tasks in addition to per-condition tasks. A multi-condi-
tioned task is made of samples from randomly selected
ICDs. Our intuition for generating multi-conditioned tasks
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Fig. 3. An illustration of per-condition tasks and multi-conditioned tasks
generated from five individual conditioned datasets (ICDs).

is to intentionally provide the base model with artificial con-
ditions so that it can be (i) trained on more diverse tasks
beyond per-conditions tasks while (ii) avoiding possible
overfitting to the per-conditions tasks. We generate C' num-
ber of multi-conditioned tasks for each iteration of training
in order to take advantage of the randomness for generaliza-
tion. Specifically, for each class label y; €Y, we randomly
choose an ICD D, and sample data from the dataset for the
label as illustrated in Fig. 3. That means for all (z;,y;) in a
multi-conditioned task if y; =y; then (z;,y;) € D.. Each
multi-conditioned task is thus generated from at most || =
M ICDs. This way, we can generate more realistic tasks
compared to entirely random sampling from D, as it keeps
input distribution within each class.

Homogeneous Task Generation. We generate the above
tasks with keeping labels consistent across tasks. This is
contrary to existing meta learning approaches [27], [28],
[29], [30] where the labels for each task are mixed randomly,
ie, V1, # yTi where 7, # T ;. Since the objective of most
meta learning studies in machine learning is focused on
adapting to arbitrary tasks that might not have the same
labels, this label mixing strategy would be natural for them.
On the other hand, in our problem, the source and the target
datasets have different distribution but have the same label
space, i.e., V7, = yTJ. where 7, # 7;. We found keeping
labels consistent is effective as it leverages the common
knowledge on the same label set ) across tasks.

Since the source dataset is collected from multiple condi-
tions, it is common to have imbalanced numbers of data
instances among D.. When generating per-condition and
multi-conditioned tasks, we sample a batch of data uni-
formly across conditions (i.e., giving the same weight to all
conditions and accordingly the generated tasks) in order to
avoid being biased to some conditions that have a higher
number of samples than others.

The generated task set 7 via the above three strategies
has 2C tasks. The base model iterates each task to update
the parameters as explained next. We evaluate the effective-
ness of our unique task generation strategies in Section 5.3.

3.3 Parameter Updates

With the generated tasks in Section 3.2, we train the parame-
ters of the base model via meta learning. Specifically, Meta-
Sense employs model-agnostic meta learning (MAML) [27]
for updating the parameters. MAML is applicable to any
deep neural networks that use gradient descent (model-
agnostic) and requires only a few gradient steps to update
the model. The assumption of MAML is that there exist

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 10, OCTOBER 2022

initial parameters that are transferable to a new task with
only a few shots. MAML trains the initial parameters in a
way that the trained parameters are adaptive to the change
of tasks. Our intuition behind adopting MAML is that for
deep sensing models, there exist effective initial parameters
that are transferable between individual conditions so that
the parameters can be adapted to the target condition
within a few gradient steps.

From each task 7;, MetaSense samples a support set St,
and a query set Qr, that have K shots, respectively. K
should be a small number (e.g., 5) to simulate a few shots
from a target user. Support sets are used for training the
task-specific parameters 67, which simulates adapting
parameters to a target condition. Query sets are used for
evaluating the task-specific parameters and eventually
updating the parameters 6 of our interest (i.e., the base
model). We ensure support sets and query sets have no
overlapping data. We target a multi-class classification
problem and use cross-entropy loss to evaluate the per-task
loss, i.e.,

Lr(f) = > wilogfolz)) +(1—y)log fo(1 - z,). @)

(zjy)€5T,

We then get 7';-specific parameters 67 with a few gradi-
ent descent steps (e.g., 5 steps)

9{]’1. =6— avH‘CT,’(fé’)a (3)

where the task learning rate « is a hyperparameter: it is usu-
ally set as a higher number (e.g., 0.1) than traditional learn-
ing rate to enforce fast adaptation [27].

With the task-specific parameters, we define a meta-
objective function as follows:

arg;nin ZT) Lr, (fe/T ) where G’Tl =0—aVLlr,(fy)- 4)

The meta-objective is finding parameters ¢ that minimize
the sum of task losses. Note that each task loss L, is evalu-
ated by the task-specific parameters 07, that are calculated
by a few gradient descent steps with a query set that has a
few shots (Eq. (3)). This enforces 6 to be sensitive to task
changes so that it becomes effective within a few gradient
steps. Note that the tasks generated by MetaSense reflect
individual conditions. The meta-objective is thus inter-
preted as minimizing the sum of task-specific losses so that
the optimal parameters of 0 become an effective initialization
of the model such that with the parameters, the model can
rapidly adapt to a new condition after several gradient steps
with a few shots.

The last step is updating the parameters 6 by minimizing
the meta objective with Adam optimizer [42]

0« 60— B-Adamgy where gy =V Z ETi(fng )s )
T; !

and the meta learning rate 8 is a hyperparameter. Note that
the trained base model fj has initial parameters 6, = 6 that
are experienced through meta learning with multiple tasks
that simulate encountering unseen conditions in the real
world. The base model is now prepared for adaptation with
a few shots from a target user.
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TABLE 1
Accuracy Comparison Between Traditional DNNs (Src+Tgt) and
MetaSense With and Without Similar Conditions

W /o similar cond. W/ similar cond.

Src+Tgt ~ MetaSense  Src+Tgt ~ MetaSense
Activity 30.26 67.28 86.20 74.76
Speech 48.57 63.93 63.92 68.21

3.4 Adaptation
After the base-model training is performed by the devel-
oper, it could be deployed to real users. The base model is
adapted for the target user with a few shots (e.g., 1 or 2 sam-
ples per class) once at the beginning of the sensing applica-
tion. We denote U = {(z1,y,),-..,(zL,y;)} as the target
user’s dataset that has % shots. In the adaptation, we assume
the target user’s dataset has no identical conditions to the
source dataset that the base model is trained with, i.e.,
DNU=0.

Let the base model be fy,, where 6 is the initial parame-
ters that are trained through meta learning. After i gradient
descent steps with the few shots, the parameters become

0; = 0;1 — aVoLy(fo, ,)- ©

Note that since the base model experienced a set of tasks
through Egs. (2)-(5), the trained parameters can effectively
adapt to the target condition with the meta-learned knowl-
edge. While requiring only a few shots from the target
user, another advantage of this parameter update algo-
rithm is that it takes only a few gradients steps, which sig-
nificantly reduces the training time on the resource-
constraint mobile devices. We evaluate the time taken to
adapt the model compared to other deep neural networks
baselines in Section 5.4.

4 SIMILAR CONDITION DETECTOR

For cases where certain conditions in the source dataset are
similar to the target condition, we aim to improve the classi-
fication accuracy by reusing similar source samples as addi-
tional shots for the adaptation step. To this end, we design
the similar condition detector (SCD) that identifies whether
the source dataset includes a similar condition to the target
and fetches additional shots that help adapt to the target.

4.1 Motivation

Considering numerous combinations of users and devices,
MetaSense learns how to adapt to a target condition via
meta learning, instead of only learning directly from the
available dataset. The assumption that a target condition is
different from source conditions, however, might not hold
in some cases. There are situations where the source dataset
includes a condition that is (highly) similar to the target con-
dition. For instance, some applications do not involve user
dependency, such as ambient scene detection [32], song
identification [33], earthquake detection [43], etc. As they
depend only on devices, there is a good chance of having
duplicate conditions between the source and target condi-
tions. On the contrary, some applications do not entail
device dependency, such as app recommendation by users’
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Fig. 4. T-SNE visualization of source conditions and the target condition
under the with-similar-condition case.
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usage pattern [44]. Combined with an increasing number of
available source data (open datasets) and crowdsourcing
platforms [45], [46], MetaSense should utilize cases when
source and target conditions could be similar.

For cases where the target condition is included in the
source conditions, the meta learning objective of MetaSense
might not perform better than a traditional learning objec-
tive via a standard supervised learning scheme. Table 1
shows an example of this situation for the activity and
speech recognition data, given 1-shot from the target condi-
tion (details are in Section 5). Src+Tgt is a traditional super-
vised learning trained with both the source and the target
data. As shown, MetaSense outperforms Src+Tgt in the
“without-similar” condition, demonstrating the ability of
MetaSense to adapt to the target condition with very few
training examples. However, in the “with-similar” case, we
observe that MetaSense often perform worse than Src+Tgt.
This is because MetaSense fundamentally regards condi-
tions as independent tasks and does not assume condition
similarity between the source and the target. Accordingly,
the adaptation step depends solely on the few shots given
from the target. Therefore, it is essential for MetaSense to
manage such scenarios to further enhance its performance
across various mobile sensing applications.

When there exists a level of similarity between source
and target conditions, our goal for the performance of Meta-
Sense is to be as comparable as the traditional supervised
learning. To this end, we propose similar condition detector
(SCD) to identify whether similar conditions to target condi-
tion exist in source conditions, and utilize them as addi-
tional shots for the adaptation step.

4.2 Design of the Similar Condition Detector

Recent studies have demonstrated that the learned repre-
sentations through backpropagation in neural networks
could be utilized as distinctive features among different dis-
tributions of data [29], [30], [47]. Our key intuition of design-
ing the similar condition detector (SCD) is that if a certain
condition in the source dataset is similar to the target condi-
tion, the learned representations (for simplicity, we refer it
as features) of the source condition have a closer distance to
the target condition, compared with the other source
conditions.

Fig. 4 shows T-SNE [48] visualization when a similar con-
dition to the target is included in the source.' The numbers
refer to class labels (0-8) of our activity recognition
dataset (Section 2.2). We sampled Source D and Target from

1. T-SNE is a dimension reduction algorithm widely used when
visualizing multi-dimensional data in a way that similar points gather
closer than dissimilar ones.
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the same user and device, while Source A, B, and D are from
different combinations. It clearly illustrates the proximity of
samples between similar conditions.

The main goal of SCD is to determine criteria with which
the detector decides whether there is a source condition that
is similar to the target condition. A naive approach would
be to simply select a source condition that has the closest
distance to the target and fetch additional shots from the
condition. However, choosing the condition with the closest
distance does not necessarily improve the accuracy, as the
closest distance still might not be close enough. Therefore, a
desirable SCD should only select source conditions that
would improve the accuracy. We hence follow a statistical
approach to detect similar conditions, which is further
divided into building distance profiles (Section 4.2.1),
detecting similar conditions (Section 4.2.2), and fetching
additional shots (Section 4.2.3).

4.2.1 Distance Profile

From the source dataset, we generate a distance profile that is
composed of the distribution of intra/inter-condition fea-
ture distance. A distance profile represents the feature dis-
tance across conditions in the source dataset, which is later
utilized to detect matched conditions for the target condi-
tion. When the training of the base model is complete, a dis-
tance profile is generated with the base model before the
adaptation to the target.

For each condition ¢ in a source dataset, we define a pro-
totype M, as a set of mean feature vectors per each class

./\/l(;:{ml,mQ,...,mM}, (7)

where 1 <c¢ < C and m; = WZIA YD, F(xr). Here, y;, =
OneHot(4), K is the number of samples in D, satisfying y;, =
OneHot(7), F(+) is the learned features, i.e., the intermediate
output of the model before fully-connected layers, and
OneHot(-) is one-hot representation.

We define the distance between a shot s and a prototype
M. for condition ¢ as follows:

Dist(s, M,) (®)

D,‘ZHJT

such that (z/,4') € s and y = OneHot(1). This distance is the
average of class-wise distances between a shot and a proto-
type. We use class-wise distance because even within a con-
dition, each class has different learned representation, as
observed in Fig. 4.

With the distance metric, we create a distance profile
from the distributions of the distances between all the shots
and the prototype pairs. Specifically, we create a distance
profile, P, a C by C matrix of which element is the mean
and the standard deviation of the distance distribution as
follows:

P, .; ={Mean(Distses,, (s, M,;)),

. )
Stdev(Distses,, (¢, Me;))}s

where P, s is the c h_row and c] "_column element of P, Se;

refers to all shots in D and 1 < ¢, ¢; < C.
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S¢: Shots in condition ¢

M, M M, My M, Ms M M, Mg M,

M. : Prototype of condition ¢

So | 136,17 303,17 290,17 290,17 242,17 252,17 | 319,17 239,16 | 312,16 304,16
Sy 2152 - 212,3 234,3 267, 2 229,3 210, 3 266, 2 251,3 254, 2
S, 2816 236,10 | 136,12 216,9 252,8 218,9 201,10 271,8 236, 10 229,8
Sz 272,4 247,5 205, 5 229,5 211,6 243,5 256, 4 263,7 230, 4
Sy 2249 281,7 244,7 231,7 208, 9 287,6 227,8 312,6 254, 6
Ss 243,17 252,19 218,19 220,19 21518 26519 228,18 286,17 222,17
Se | 309,9 232,13 199,14 251,12 293,11 262,12 | 130,15 30510 250, 11 266, 11

S, 241,14 | 299,12 283,13 27811 24812 243,14 | 31812 153,16 279, 12
Sg ..2853 2544 2145 2545 | 301,3 2654 2305 | 2984 275.4

So i 300, 8 280,10 23510 24511 266,10 227,13 272,9 271,11 299, 7 142,11 |

**** similar condition

My My M, M My M Mg M; Mg My
Stgr 297 277 234 241 259 223 273 265 299 150

Fig. 5. An example of distance profile and comparison with the distance
to the target condition.

The upper matrix in Fig. 5 illustrates an example of dis-
tance profile for our activity recognition dataset (Sec-
tion 5.1.1). The distance profile has the distance distribution
(mean and standard deviation) of all shots in the source
with respect to the source conditions. Note that each condi-
tion has a distinctive feature distance relationship with
other conditions and has the shortest distance with itself.

4.2.2 Detection Algorithm

Given the shots from the target condition, we calculate the
distance between the target condition and the source condi-
tions in the same way as in Eq. (8). For detecting a similar
condition, we leverage the observation that when a source
condition has a similar distribution to the target, the dis-
tance patterns of the samples in that condition with respect
to the prototypes are comparable to that of the target condi-
tion (Fig. 5).

We determine a condition ¢; as a similar condition when
(i) the index of shortest distance is the same as that of S
and (ii) it satisfies the following equation for all ¢;:

|Mea.n(Dis‘l:S€5tgt (s, ./\/lcj)) - Meanci’6j| < y-Stdev,,

(10)
where P, ., = {Meancl.,cj, Stdevc,l_ﬁj}, Stgt is the collection of
the target shots, and y is a hyperparameter. Fig. 5 shows that
Sy is detected as a similar condition to the target following
the detection algorithm. There could be multiple choices for
the hyperparameter y and we chose 2.58, which covered 99
percent of the distribution and performed well in our experi-
ment. To tune y, one can use a hyperparameter searching
algorithm such as Bayesian Optimization [49]. However,
finding the optimal y value without test data is infeasible.
One possible way for finding an appropriate y with only a
source dataset is by selecting the best value through cross-
validation within the source dataset. We think this is viable
because we observed that the characteristics of a dataset
remain the same within the dataset, even if the target condi-
tion changes. We leave it as future work.

4.2.3 Fetching Additional Shots

After detecting similar conditions, we use the available
shots from the selected conditions and combine them with
the target shots. We use the augmented shots for the adap-
tion stage (Eq. (6)).
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TABLE 2
Settings for Our Data Collection

User Device Type IMU rate oS

P1 Samsung Galaxy J7 Phone  100Hz 7.0.0

P2 Google Nexus5 Phone  200Hz 6.0.1

P3 Essential Phone Phone 400Hz 7.1.1

P4 Google Pixel2 Phone 400Hz 8.1.0

P5 HUAWEI P20 Phone  500Hz 8.1.0

Pé6 Samsung Galaxy S9 Phone 500Hz 8.0.0

P7 LG G5 Phone  200Hz 6.0.1

P8 LG Urbane Watch  200Hz  Wear 2.23.0
P9 LG G Style Watch  100Hz Wear 2.6
P10 ASUS Zenwatch3  Watch 100Hz  Wear 2.23.0

5 EVALUATION

We evaluate MetaSense to answer the following questions:
(i) How well does MetaSense perform against existing
approaches? (ii) How effective are MetaSense’s task genera-
tion strategies? (iii) How rapidly can MetaSense adapt to
the target? (iv) How well does MetaSense perform on differ-
ent datasets? (v) What is the performance impact of our sim-
ilar condition detector?

5.1 Settings
5.1.1 Data Collection

We detail the data collection and preprocessing of our data-
sets. The goal of our data collection was to evaluate Meta-
Sense with real-world datasets collected under individual
conditions. Specifically, we collected the two most widely
used types of sensors, IMU and audio. We recruited ten
users (aged 21-29; mean 24.6, and three females) and con-
ducted IRB-approved data collection experiments. Each
user performed activity recognition (for IMU) and speech
recognition (of audio) tasks. We randomly distributed ten
different Android devices (seven smartphones and three
smartwatches) for each user, as listed in Table 2. We believe
this dataset is the first dataset collected under individual
conditions from two common sensors (IMU and audio).

Our activity recognition task was composed of nine
activities that are commonly used in the literature [15], [50].
Specifically, they were “walking,” “running,” “stair down,”
“stair up,” “lying,” “standing,” “stretching,” “sitting,” and
“jumping.” Participants performed each task for around 2-5
minutes with the duration varying based on the intensity of
the activity. Note that we let the participants hold their
device freely (e.g., in the pocket, on hand, or on wrist) for
each activity to assure conditions are individual and natu-
ral. We did not give explicit guidelines to the activities, so
that participants performed the activities according to their
personal interpretation. We recorded each z, y, and z-axis of
accelerometer and gyroscope values at the maximum sam-
pling rate. We divide the data with the 256-length window
and use it to train the model.

The second task is speech recognition. We chose 14
words considering IoT applications [51]: “yes,” “no,” “up,”
“down,” “left” “right,” “on,” “off” “stop,” “go,
“forward,” “backward,” “follow,” and “learn” were used.
Each participant held the device in their preferred fashion
and uttered each word 30 times in an office room. We did
not control their behaviors so that they had different
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individual conditions, such as speech loudness, speed, and
distance between the device and the user, etc. We recorded
each utterance of a word for 2 seconds with 16 kHz
sampling rate.

5.1.2 Baselines

We compare MetaSense to six baselines, which are widely
used approaches for handling various untrained conditions:
traditional DNNSs, state-of-the-art transfer learning and
few-shot learning approaches. We not only aim to compare
the performance of MetaSense to these baselines but also
inspect how these baselines perform under condition
changes. Specifically, we have the following baselines.

Src. For Src (source only), we use only the source dataset
for training the deep neural network and there is no adapta-
tion to the target user. Src is a widely used method in resolv-
ing the diversity of inputs, i.e., training on as many data as
possible that are collected from diverse conditions.

Tgt. Tgt (target only) trains the model with only a few
shots from the target user.

Src+Tgt. Src+Tgt (source plus target) uses both the source
dataset and the target users’ few shots for training the deep
neural network. Compared to Src, this baseline leverages
the target user’s data for adaptation while utilizing a rela-
tively large amount of source data to learn general
representations.

TrC. Transfer Convolutional (TrC) [34] is the state-of-the-
art transfer learning in adapting to a target user’s activity
recognition with motion sensors with a few data samples.
Specifically, TrC first trains the model with the source data-
set. When TrC adapts the model, it freezes the CNN layers’
parameter and fine-tunes only the following fully connected
layers with a few shots.

PN. Prototypical Network (PN) [30] is one of the state-of-
the-art few-shot learning algorithms based on meta learn-
ing. Given a few training data, PN generates prototypes in
embedding space, and each prototype is the representative
of each class. In inference, PN uses the euclidean distance
metric to classify the closest prototype (i.e., class).

MAML. Another popular few-shot learning baseline is
MAML [27], which is adopted in our parameter update
stage Section 3.3. The performance difference between PN
and MAML would indicate which method is more effective
in deep mobile sensing, while the comparison between the
original MAML and MetaSense would highlight the impact
of our task generation strategies.

5.1.3 Implementation

To ensure a fair evaluation, we used the same model archi-
tecture and hyperparameters, e.g., learning rates, for all
DNN-based baselines and MetaSense. We designed them
with convolutional neural networks (CNN) followed by
fully-connected layers. CNN is a widely used architecture
not only in vision but also in activity and speech recognition
with mobile sensors [34], [52], [53]. Specifically, the model
architecture was composed of three to five convolutional
layers, followed by three fully-connected layers. We used
Rectified Linear Unit (ReLU) for activation function. We
used two regularization techniques, i.e., Ly-regularization
and batch normalization, to prevent overfitting. We trained
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Fig. 6. Average accuracy with 1, 2, 5, and 10-shots.

the model with Adam optimizer [42]. We used five gradient
descent steps for training the base model (Eq. (2)) with K =
5 and ten steps for adaptation (Eq. (6)). We implemented
MetaSense using the PyTorch framework [54] and trained
the model in a server equipped with eight NVIDIA TITAN
Xp GPUs and 256 GB memory with Intel Xeon E5-2697
2.30 GHz processors.

5.2 Result

We trained the base model in a leave-one-user-out manner.
Specifically, we used the others’ data as the source dataset
for each target user. Namely, there are ten evaluations in
total, and for each user, we have a source dataset with nine
ICDs of the other users. We report the average accuracy for
the untrained/target user among the ten scenarios. We
focuson 1, 2, 5, and 10-shot cases that are frequently used in
few-shot learning evaluations [27], [28], [30]. We used early
stopping on the validation set and evaluated the accuracy
on the test set.

Fig. 6 reports the accuracy of the baselines and Meta-
Sense for activity recognition (Fig. 6a) and speech recogni-
tion (Fig. 6b). The error bar is the standard deviation (stdev
for short) across users, and thus high stdev indicates the
method has high variance among users, i.e., low stdev sug-
gests the method shows stable performance across users.

In general, as the number of shots increases, the accuracy
also increases except for Src as Src does not use the target
data. In most cases, Tgt performs better than Src, which
means the learned representations from multiple other con-
ditions would not generalize to a new condition. This again
highlights the importance of adaptation for deep mobile
sensing. Tgt, however, does not achieve higher performance
than MetaSense, in particular when the number of data is
small due to overfitting. In all cases, MetaSense outperforms
the baselines, which shows the effectiveness of our
approach when dealing with new unseen/target conditions.
In activity recognition, MetaSense improves the accuracy of
Src from 27.6 to 67.2 percent with only one shot, where the
improvement is 15 percent higher compared to TrC. Fur-
thermore, MetaSense outperforms the few-shot learning
baselines thanks to our task generation strategies, which we
dissect in Section 5.3.

Fig. 7 illustrates the receiver operating characteristic
(ROC) curves of the baselines and MetaSense for the activity
and speech recognition datasets. We also specify the area
under the curve (AUC) for each method, where AUC=0.5
means a random classifier while AUC=1 is a perfect classi-
fier. Similarly, MetaSense shows its effectiveness over the
baselines without depending on a single false-positive-
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rate/true-positive-rate threshold. We found similar patterns
in other experiments, and we thus focus on the accuracy
metric in the following experiments.

5.3 Effect of Task Generation
We now examine the effectiveness of our task generation
methods described in Section 3.2. We evaluated the accu-
racy of MetaSense while gradually adding each of our task
generation methods. As a baseline, we used random task
generation from the source dataset, which is widely used in
recent meta learning approaches [27], [28], [29], [30]. We
implement the random task generation as described
in Section 3.2. More specifically, tasks are generated from
the instances sampled randomly from the source data
regardless of conditions. We then use the same number of
random tasks as the per-conditioned tasks. We use the activ-
ity and speech recognition datasets and report the accuracy
for 1,2,5, and 10-shot cases.

Fig. 8 reports the accuracy gain of our task generation
methods. Random refers to the random task generation.
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Fig. 7. ROC curves for the activity and speech recognition datasets given
5 shots from the target.
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Fig. 8. Accuracy with and without our task generation strategies.
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The accuracy improvement escalates as each of our task
generation strategies is added. The result shows that our
per-condition (Per) and multi-conditioned (Multi) tasks are
effective than random sampling. This means those tasks can
teach more plausible conditions to the base model than the
randomly generated tasks. Furthermore, generating homo-
geneous tasks (Homo) helps to accumulate the common
knowledge learned from the tasks that have the same label
set ) that would improve the performance when faced with
a target task that also has ). In summary, the results demon-
strate the importance of task generation algorithms to teach
the base model, and our task generation methods effectively
utilize the given source dataset (18 percent gap on average,
33 percent in the extreme case compared to Random) so
that they catalyze the efficacy of meta learning for resolving
the condition problem.

5.4 Adaptation Overhead

It is important to note that all the baselines and MetaSense
requires different adaptation overhead. In this section, we
demonstrate that MetaSense is also computationally effi-
cient in the overhead of adaptation, i.e., the training time
required to adapt to the target, which is crucial to ensure
high quality mobile user experience. We investigate how
many training epochs are required for each method to con-
verge to its best performance (with respect to validation). In
the experiments, we compare only Tgt, Src+Tgt, TrC, and
MetaSense because Src and PN do not require the adapta-
tion step while MAML has the same adaptation overhead
as MetaSense. We report the accuracy averaged among 10
users in the 5-shot cases, where the overall trends for other
shot cases are similar.

Fig. 9 plots the accuracy changes for the target as training
for adaptation proceeds. Note that while Tgt, TrC and Meta-
Sense require only the target user’s data for adaptation, Src
+Tgt trains with the entire data composed of the source and
the target datasets. Therefore, each epoch of Src+Tgt
requires about ten times more time than others with our
datasets. For Tgt, TrC, and MetaSense, the required time for
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one epoch is the same. Both activity recognition (Fig. 9a)
and speech recognition (Fig. 9b) show that MetaSense
entails significantly less adaptation overhead compared to
other approaches while achieving the highest accuracy. TrC
requires fewer epochs to converge compared to Tgt as TrC
already learned the representations through the source
dataset and fine-tunes its parameters to the target via trans-
fer learning. MetaSense maximally leverages the source
data via meta learning so that it has the fastest convergence.
As we use only ten gradient steps for adaptation as
described in Section 5.1.3, MetaSense converges with only
ten gradient steps. A different number of gradient steps
could be used, e.g., more steps for achieving higher accu-
racy or fewer steps for minimizing the training overhead.

1-shot

5.5 Other Datasets

We used additional four mobile sensing datasets to investi-
gate MetaSense’s generalizability to other sensing datasets.
We also used four vision datasets to understand whether the
method of MetaSense could translate into another domain.

5.5.1 HHAR

Heterogeneity Human Activity Recognition (HHAR) data-
set [15] was collected with nine users for six human activi-
ties. Each user was equipped with eight smartphones
around the waist and four smartwatches in the arms, and
logged accelerometer and gyroscope values for activities.
This dataset has user and device-model dependency but
does not include various device positions as each device is
located at specific positions. We used the 256-length win-
dow with 50 percent overlapping between two consecutive
windows [15]. After eliminating duplicate device models
and conditions with less than 10 shots, we have six users
and four different devices that result in a total of 24 condi-
tions. We evaluated each of 24 conditions with 15 (5 x 3)
ICDs, ensuring no overlap in either the target device or the
user. We report the average accuracy of the 24 conditions.
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(a) Activity recognition.

Fig. 9. Target accuracy changes over epochs.

(b) Speech recognition.
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Fig. 10. Four vision datasets used in our experiment.

552 DSA

Daily and Sports Activities (DSA) dataset [50] was collected
with eight users for 19 daily and sports activities. Each user
was equipped with the same five sensor units, with each
unit composed of an accelerometer, a gyroscope, and a mag-
netometer, on five different positions: torso, right arm, left
arm, right leg, and left leg. This dataset, therefore, has user
and sensor-position dependencies. We use the 125-length
window [50]. There are a total of 40 conditions, and similar
to HHAR, we evaluate each of 40 conditions with 28 (7 x 4)
exclusive ICDs. We report the average accuracy of the 40
conditions.

5.5.3 WESAD

Wearable Stress and Affect Detection (WESAD) [55] dataset
was collected with 15 subjects for stress and affect detec-
tion. Each user was equipped with the same wrist- and
chest-worn devices that include the following sensing
modalities: blood volume pulse, electrocardiogram (ECG),
electrodermal activity (EDA), electromyogram (EMG), res-
piration, body temperature, and three-axis acceleration.
Furthermore, three different affective states (neutral, stress,
amusement) and self-reports of the subjects are included in
the dataset. This dataset has user dependency but does not
contain device-model and sensor-position dependencies as
the same wearable devices were used. We used all sensor
modalities for our evaluation. We followed the lowest sam-
pling rate (4 Hz for EDA and temperature sensors) and
down-sampled the other sensor values for the consistency
of the model among datasets. We used the 8-length win-
dow for training. There are 15 conditions, and we report
the average accuracy of them. The evaluation of MetaSense
with this dataset highlights the effectiveness in stress and
affect detection.

5.5.4 ExtraSensory

ExtraSensory [56] dataset was collected with 60 participants
in the free-living environment for seven days. Each subject
used their personal phone (34 were iOS users and 26 were
Android users), logged sensor data and self-reported labels
describing their activity context. As there was no constraint
on activities the participants needed to perform, the distri-
bution of activities are different among users. We thus used
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Fig. 11. Accuracy of the baselines and MetaSense on the HHAR
dataset.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 10, OCTOBER 2022

100 Tgt ®Src+Tgt mTrC HPN ®EMAML B MetaSense

90
80
70
60
50
40
30
20
10

0

2-shot 10-shot

Accuracy (%)

1-shot 5-shot

Fig. 12. Accuracy of the baselines and MetaSense on the DSA dataset.

the three most common activities (Iying-down, sitting, and
walking) and removed the other labels. Besides, users could
selectively provide a subset of sensor information. We used
the data with all sensor modalities (accelerometer, gyro-
scope, magnetometer, audio, and location) and removed
data with any missing sensor information. We used the 8-
length window with 50 percent overlapping between two
consecutive windows. We selected users with greater than
or equal to 20 shots (the minimum for the following evalua-
tions) of the three classes with full sensor information,
which leaves us with 13 users. We report the average of the
13 individual conditions.

5.5.5 Vision Datasets

Although MetaSense is designed for mobile sensing, we
want to test the performance of MetaSense in another
domain and evaluate whether our approach could be trans-
lated into other domains. Therefore, we experimented with
our framework on vision datasets, which is the most active
domain of machine learning research. Specifically, we used
four vision datasets as shown in Fig. 10: MNIST [57], MNIST
with different background and colors (MNIST-M) [47], Syn-
thetic numbers (SYNNUM) [47], and Street-View House
Number data set (SVHN) [58], which are used in the unsu-
pervised domain adaptation problem [47]. As these four
datasets have the same class set (digits) and have different
distributions, we think they are suitable for our experiment.
We selected one dataset as the target and used the remain-
ing as the source dataset. We report the average accuracy of
the four targets.

5.5.6 Results

Figs. 11, 12, 13, and 14 show the accuracy of the baselines
and MetaSense with the HHAR, DSA, WESAD, and Extra-
Sensory datasets, respectively. The results indicate that the
effectiveness of MetaSense generalizes to other sensing
datasets. The baselines show different trends between dif-
ferent datasets. For instance, the higher accuracy of Src and
Src+Tgt in the HHAR dataset than in the DSA dataset
means HHAR has more similar distributions among the

Src ® Tgt = Src+Tgt mTrC PN ®MAML lMetaSense‘
% I I :
A | || | ||
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Fig. 13. Accuracy of the baselines and MetaSense on the WESAD
dataset.
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Fig. 14. Accuracy of the baselines and MetaSense on the ExtraSensory
dataset.

conditions. On the other hand, Src and Src+Tgt perform
poorly in the DSA dataset due to the severe differences
between conditions. MetaSense nevertheless shows robust
performance due to its flexibility in learning and adaptivity
to new conditions.

Fig. 15 shows the result for the vision datasets. Compared
to the mobile sensing datasets, Src and Src+Tgt outperform
Tgt and other methods. We interpret that this is because the
knowledge learned from vision datasets (i.e., ten digits) is
more transferable to different datasets with the same classes,
while mobile sensing datasets are more individual than vision
datasets, and thus the target data is more important. Still,
MetaSense outperforms transfer learning and meta-learning
based adaptation, which shows its effectiveness in the vision
domain compared to other adaptation methods.

5.6 Impact of Similar Condition Detector

We now evaluate the impact of gathering additional shots
from SCD. We evaluate the accuracy of MetaSense under two
settings, i.e., with- and without-similar conditions in the
source dataset to understand the impact of SCD in both cases.
We used all aforementioned datasets for the evaluation. To
separately evaluate the with- and without-similar cases
within the same dataset, we additionally generated situations
where similar conditions are included in the source dataset.
Specifically, we divided the data in the target condition into
halves, incorporated one half into the source dataset, and the
other half is used for few-shots of the target. By doing so, a
source dataset includes a similar condition to the target condi-
tion. We also evaluate the impact of having partially identical
conditions in the source dataset in Section 5.6.3.

5.6.1 Accuracy With Similar Conditions

We investigate the effect of SCD when similar conditions are
included in the source. Fig. 16 shows the accuracy of the base-
lines and MetaSense among four datasets. Tgt is excluded as it
does not use the source dataset in training. We compare Meta-
Sense without SCD to MetaSense with “naive SCD” and SCD,
where the naive SCD is a baseline that always selects the condi-
tion with the closest distance to the target without considering
the similarity. For instance, in Fig. 5, naive SCD chooses Sy as
the distance from its prototype to the target is the shortest (150).
In our with-similar-conditions settings, naive SCD can be seen
as an effective upper bound for SCD as it always assumes there
exists a similar condition and fetches shots from it.

As expected, if similar conditions are included in the
source data, the accuracy of Src and Src+Tgt is drastically
increased compared with results without similar conditions.
It is interesting to note that the performance of transfer
learning (TrC) and meta learning (PN, MAML) baselines
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Fig. 15. Accuracy of the baselines and MetaSense on the vision
datasets.

are far below that of Src and Src+Tgt as they do not leverage
similar conditions in the source and the target. Similarly,
MetaSense without SCD suffers from the same problem.
Meanwhile, with SCD, MetaSense shows a significant
improvement. The accuracy improvement is prominent,
especially when the number of given shots is few (e.g.,
15 percent increase for activity recognition in the 1-shot
case), by utilizing additionally fetched shots from similar
conditions. We also observe that with the help of SCD, the
classification accuracy of MetaSense (w/ SCD) is compara-
ble to that of naive SCD.

5.6.2 Accuracy Without Similar Conditions

When a source dataset does not have similar conditions
from the target, a desirable SCD should not degrade the
performance resulting from wrong selections. We thus
evaluate the accuracy impact of SCD in scenarios without
similar conditions in the source dataset. Fig. 17 shows the
result. We focus on MetaSense without SCD, with naive
SCD, and with SCD as the accuracy of other methods are
the same as previous results (Figs. 6, 11, and 12). We only
present the 5-shot case, but the trend is similar across dif-
ferent number of shots.

Compared with MetaSense without SCD, naive SCD
shows an accuracy degradation (except for the ExtraSensory
and Vision datasets) as it always gets additional shots from
the closest condition without considering whether it is simi-
lar to the target. On the other hand, MetaSense with SCD
shows nearly identical performance to MetaSense without
SCD by effectively rejecting wrong selections that are closest
conditions but not similar to the target.

The result of the vision datasets is in line with the findings
of the previous result in Fig. 15. In both with- and without-
similar conditions cases, naive SCD is better in the vision
experiment because of utilizing transferable knowledge from
other conditions. We found that the ExtraSensory dataset
could leverage the common knowledge from other condi-
tions, and thus there is no degradation in naive SCD, possibly
due to fewer classes (three) compared to the other datasets.

In summary, SCD enhances the accuracy of MetaSense
when similar conditions exist in the source dataset and does
not degrade the accuracy when there is no similar condi-
tions. We believe our SCD framework, combined with
MetaSense, further brings mobile sensing applications
closer to wide deployment in real settings.

5.6.3 Impact of Training With the User, Device,
or Position
In the previous experiments for the with-similar case, the

source data includes the target condition. This inclusion
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Fig. 16. Accuracy with similar conditions included in the source dataset.

simplifies the analysis in that we can separately evaluate
under with- and without-similar conditions. However,
learning with the data collected from the identical condition
to the target might always improve accuracy. We thus
investigate the impact of SCD when the source data
includes “partially identical” conditions to the target. For
instance, the source data includes the same device as the tar-
get user has but is collected from a different user.

We use HHAR and DSA datasets for this experiment as
they were collected from all combinations (i.e., from all
users x devices or users x positions) and thus suitable for
our purpose. Specifically, for the HHAR dataset, we select a
target among “six users x four devices” combinations and
use the rest 23 as the source data. For the DSA dataset, we
select a target among “eight users x five positions” combi-
nations and use the rest 39 as the source data. This way, we
can include partial conditions (e.g., training with the target
user and the device, but not exactly the same pair) as
opposed to the previous experiments with no overlap
between the source and the target Section 5.5.

Fig. 18a shows the result for HHAR, and Fig. 18b shows
the result for DSA. The result shows that with partially
similar conditions, the overall trend is somewhere between
those without similar conditions (Fig. 17) and with similar
conditions (Fig. 16). We observed that SCD did not detect
anything similar to the target condition in most cases, and

thus the performance between MetaSense w/o SCD and
w/ SCD is similar. This is also in line with our motivation
and previous findings that a combination of user, device,
and position makes a unique individual condition.

Interestingly, we found that SCD detected a similar condi-
tion in some cases, but it did not necessarily result in perfor-
mance improvement or decline. Especially for the HHAR
with the 1-shot case, we found that the most similar condi-
tion to the target selected from the naive SCD does not harm
the performance, while with more shots given, the accuracy
of naive SCD decreases compared to MetaSense. This implies
that with more shots, directly adapting to the target data is
more effective than relying on the most similar condition
from the source, and our SCD algorithm can effectively catch
this situation.

‘ W MetaSense (w/o SCD) M MetaSense (naive SCD) B MetaSense (w/ SCD)‘

Accuracy (%)

Activity Speech HHAR DSA WESAD ExtraSensory  Vision

Fig. 17. Accuracy without similar conditions in the source dataset given
5 shots from the target.
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6 RELATED WORK

We summarize prior approaches that tackle the challenge of
diverse dependencies in mobile sensing.

6.1 Synthetic Training

One category to mitigate the dependency problem is to train
with synthetic training examples generated from the source
dataset [35], [59]. Mathur et al. [35] proposed building a
deep model with synthetic data made of multiple devices to
mitigate hardware/software heterogeneities of smart devi-
ces. However, this solution is focused only on device depen-
dency. CrossSense [59] proposed a roaming model for large-
scale cross-site WiFi sensing. It leverages a large amount of
source data for generating synthetic data that mimic unseen
instances or users from the target site. However, it requires
thousands of samples from the target site to train the roam-
ing model, while MetaSense requires only a few shots.

6.2 Utilizing Unlabeled Target Data

Another line of research utilizes unlabeled data from a target
condition [52], [53], [60], [61], [62]. This approach employs
transfer learning (or domain adaptation); with labeled data
from the source and unlabeled data from the target condition,
it trains an adaptive model for the target condition. The
advantage of this approach is that target users need not label
their data. Although the approach does not require labeled
target data, it needs a large amount of target data compared
to our few-shot learning scheme. Furthermore, these
approaches have been limited to specific individual condi-
tions, e.g., changes of sensor positions on the body [61], [62]
and changes of users with the same device [60]. It is uncertain
whether such an unsupervised approach would be accurate
under a complex combination of multiple dependencies
where the input distribution is different from the source data-
set; a study showed that the performance for HAR under indi-
vidual conditions is only marginally improved or often
dropped with the unlabeled target data [53].

7 DISCUSSION

We discuss the limitations of MetaSense and suggest future
research.

7.1 Long-Term Behavior Changes

Our current design of MetaSense requires users to provide a
few shots only at the initial adaptation step. After the adap-
tation, the model is adapted to the target user’s condition.
However, user behaviors could change with time (e.g.,
walking slowly when one gets ill) and this could affect the
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model performance. To handle such a scenario, one can
periodically adapt the model parameters for fast adaptation.
Since the model is already adapted for that user at the initial
step, the model would require even fewer data to adapt to
the behavior changes. We remark that a recent meta learn-
ing scheme [63] that continuously adapts to non-stationary
environments could be a promising direction to explore for
adapting to long-term behavior changes.

7.2 Number of Classes and User Effort

MetaSense aims to minimize the users’ labeling burden via
the concept of few-shot learning. However, as a shot means
one labeled instance for each class, the labeling cost
increases when the number of classes increases. This is an
inherent issue in classification problems where the number
of classes is inversely proportional to the classification accu-
racy given the same amount of training data per class. For
less user burden, adaptation with few shots from partial
classes could be considered. For instance, a recent study [64]
proposed generating data for missing classes via a genera-
tive adversarial network (GAN), which could further miti-
gate user effort in conjunction with MetaSense.

7.3 Other Dependencies

We considered a typical practical scenario in mobile
sensing where there exist different user behaviors and
different devices (accordingly sensor positions and orien-
tations). We realize in real deployments, there could be
other unexpected dependency problems such as environ-
mental changes that we have not considered. However,
our approach could be employed in other dependency
problems. For instance, activity recognition with Wi-Fi
signals faces the challenge of environment and user
dependency [52], [59]. In situations where combinations
of dependencies make input distributions significantly
heterogeneous, we believe the insights and methods
from MetaSense could be applied.

8 CONCLUSION

We investigated the problem of individual conditions in
mobile sensing and how deep learning models perform
under such situations. Inspired by the recent successes of
meta learning in the machine learning community, we pro-
posed MetaSense, a few-shot adaptation system that learns
to learn for deep mobile sensing, as a solution to this prob-
lem. MetaSense leverages intelligently generated tasks,
parameter updates via meta learning, and similar condition
detection for resolving individual conditions in mobile sens-
ing. In essence, MetaSense is model-agnostic, i.e., applicable
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to any deep learning models, and condition-agnostic, i.e., its
coverage is not limited to a specific type of sensors and
applications. Our evaluation with multiple real-world data-
sets showed that MetaSense outperforms other approaches
in both accuracy and adaptation time with very few training
examples. We believe MetaSense is a step towards main-
stream adoption of mobile sensing for practical impact. The
proposed meta learning approach and the insights from our
study could be applied in innovative mobile sensing appli-
cations so that everyday users could deploy them without
being limited by operating conditions.
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